Patents by Inventor Tomohiro Nishida

Tomohiro Nishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200332735
    Abstract: A control device is provided for an engine in which premixed compression ignition combustion is carried out. The device includes an air amount adjusting mechanism, a variable valve mechanism, an exhaust choke valve, a water temperature sensor, and a processor. The processor controls the variable valve mechanism so that a valve overlap period of a given amount or more is formed in a low-load range where the engine load is low, and controls an injector, the air amount adjusting mechanism, and the exhaust choke valve so that A/F lean mixture gas is formed inside a combustion chamber, and premixed compression ignition combustion of the mixture gas is carried out. During the operation in the low-load range, the combustion controlling module makes an opening of the exhaust choke valve when a temperature parameter is low, smaller than that when the temperature parameter is high.
    Type: Application
    Filed: January 29, 2020
    Publication date: October 22, 2020
    Inventors: Keiji Maruyama, Takuya Ohura, Masanari Sueoka, Tatsuhiro Tokunaga, Toru Miyamoto, Tomohiro Nishida
  • Publication number: 20200332704
    Abstract: A control device is provided for an engine in which SPCCI combustion is carried out in which SI combustion of a portion of a mixture gas is performed by jump-spark ignition, and CI combustion of the remaining mixture gas is performed by self-ignition. When the engine is low load and a temperature is less than a given value, an early injection in which fuel is injected during an intake stroke and a retarded injection in which fuel is injected during the second half of a compression stroke are performed, and SPCCI combustion of A/F-lean mixture gas is performed. When the engine is low load and the temperature is greater than or equal to the given value, an injection amount ratio of the early injection is increased and the ratio of the retarded injection is decreased, and SPCCI combustion of A/F-lean mixture gas is performed.
    Type: Application
    Filed: January 29, 2020
    Publication date: October 22, 2020
    Inventors: Keiji Maruyama, Takuya Ohura, Masanari Sueoka, Tatsuhiro Tokunaga, Toru Miyamoto, Tomohiro Nishida
  • Publication number: 20200318572
    Abstract: The control apparatus for a compression ignition type engine includes a plurality of cylinder inner pressure sensors that detect pressure in each cylinder, and a combustion control unit. The combustion control unit corrects a target fuel injection amount of each cylinder by an injector based on a deviation between a predicted combustion period that is a period from an ignition timing by an ignition plug to a predetermined mass combustion timing and that is obtained based on a preset combustion model, and an actual combustion period that is a period from the ignition timing by the ignition plug to an actual combustion timing and that is obtained based on cylinder inner pressure, such that the period from the ignition timing by the ignition plug to the predetermined mass combustion timing, which is the timing when fuel having a predetermined mass ratio combusts, is equalized in each cylinder.
    Type: Application
    Filed: March 4, 2020
    Publication date: October 8, 2020
    Inventors: Masanari SUEOKA, Junichi TAGA, Hideki OMORI, Keiji MARUYAMA, Tatsuhiro TOKUNAGA, Takuya OHURA, Toru MIYAMOTO, Tomohiro NISHIDA, Kenji TANIMURA, Shinji TAKAYAMA
  • Publication number: 20200318555
    Abstract: A combustion control device for an engine includes a plurality of cylinders, a surge tank disposed in an intake path to the cylinders, an independent intake passage connecting the surge tank and an intake port of each of the cylinders, a fuel injection valve that is disposed for each of the cylinders and that supplies fuel into each of the cylinders, and a control unit that controls a fuel injection amount of each of the fuel injection valves according to an engine operating state. The control unit corrects a target fuel injection amount of each of the cylinders, the target fuel injection amount being determined according to the engine operating state, based on a re-intake correction amount set in each of the cylinders according to a re-intake amount of intake air from the intake port in internal EGR in each of the cylinders.
    Type: Application
    Filed: March 4, 2020
    Publication date: October 8, 2020
    Inventors: Masanari SUEOKA, Junichi TAGA, Hideki OMORI, Keiji MARUYAMA, Tatsuhiro TOKUNAGA, Takuya OHURA, Toru MIYAMOTO, Tomohiro NISHIDA, Kenji TANIMURA, Shinji TAKAYAMA, Yusuke KAWAI, Atsushi INOUE
  • Patent number: 10794323
    Abstract: A compression-ignition engine control system is provided, which includes an intake phase-variable mechanism and a controller. The controller controls the intake phase-variable mechanism to form a gas-fuel ratio (G/F) lean environment in which burnt gas remains inside a cylinder and an air-fuel ratio is near a stoichiometric air-fuel ratio, and controls the spark plug to spark-ignite the mixture gas to combust in a partial compression-ignition combustion. The controller controls the intake phase-variable mechanism to retard, as an engine speed increases at a constant engine load, an intake valve close timing on a retarding side of BDC of intake stroke and an intake valve open timing on an advancing side of TDC of exhaust stroke, and controls the intake phase-variable mechanism so that a change rate in the intake valve open timing according to the engine speed becomes larger in a high engine speed range.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: October 6, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10767593
    Abstract: A compression-ignition engine control system is provided, which includes an intake variable mechanism and a controller. Within a first operating range and a second operating range on a higher engine load side, the controller controls the variable mechanism to form a gas-fuel ratio (G/F) lean environment in which an air-fuel ratio inside a cylinder is near a stoichiometric air-fuel ratio and burnt gas remains inside the cylinder, and controls a spark plug to spark-ignite mixture gas inside the cylinder to combust in a partial compression-ignition combustion. The controller controls the variable mechanism to advance the intake valve open timing on an advancing side of a TDC of the exhaust stroke, as the engine load increases within the first range, and retard the intake valve open timing on the advancing side of the TDC of the exhaust stroke, as the engine load increases within the second range.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: September 8, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10767577
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A controller outputs a signal to a injector and a variable valve operating mechanism so that a gas-fuel ratio (G/F) becomes leaner than a stoichiometric air fuel ratio, and an air-fuel ratio (A/F) becomes equal to or richer than the stoichiometric air fuel ratio, and to an ignition plug so that unburnt mixture gas combusts by self-ignition after the ignition plug ignites mixture gas inside a combustion chamber. The method includes steps of determining a geometric compression ratio and determining the control logic defining an intake valve close timing IVC. IVC (deg.aBDC) is determined so that the following expression is satisfied: if the geometric compression ratio ? is 10??<17, 0.4234?2?22.926?+207.84+C?IVC??0.4234?2+22.926??167.84+C where C is a correction term according to an engine speed NE (rpm), C=3.3×10?10NE3?1.0×10?6NE2+7.0×10?4NE.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: September 8, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Masatoshi Hidaka, Toshiaki Takahashi, Tatsuhiro Tokunaga
  • Patent number: 10760519
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A control part of the engine performs a calculation according to the control logic corresponding to an engine operating state in response to a measurement of a measurement part, controls a fuel injection part, a variable valve operating mechanism, an ignition part and a supercharger so that a G/F becomes leaner than a stoichiometric air fuel ratio and a A/F becomes equal to or richer than the stoichiometric air fuel ratio, while causing the supercharger to boost, and controls the ignition part so that unburnt mixture gas combusts by self-ignition after the ignition. The method includes determining a supercharging pressure P, and determining control logic defining a close timing IVC of an intake valve. When determining the control logic, the close timing IVC (deg.aBDC) is determined so that the supercharging pressure P (kPa) satisfies the following expression: P?8.0×10?11IVC6?1.0×10?8IVC5+3.0×10?7IVC4?4.0×10?6IVC3+0.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: September 1, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10731590
    Abstract: A compression-ignition engine control system is provided, which includes an intake phase-variable mechanism and a controller. Within a first operating range and a second operating range on a higher engine load side, the controller controls the variable mechanism to form a gas-fuel ratio (G/F) lean environment in which an air-fuel ratio inside a cylinder is near a stoichiometric air-fuel ratio and burnt gas remains inside the cylinder, and controls a spark plug to spark-ignite mixture gas inside the cylinder to combust in a partial compression-ignition combustion. The controller controls the variable mechanism to retard the intake valve open timing on an advancing side of TDC of an exhaust stroke, as the engine load increases within the first range, and advance the intake valve close timing on a retarding side of TDC of intake stroke, as the engine load increases within the second range.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 4, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20200240319
    Abstract: A control device for an engine is provided, which includes a combustion controlling module, and an ignition retard determining module configured to determine whether there is a request for an ignition retard for retarding an ignition timing of an ignition plug. When the controlling module controls the ignition plug and an injector so that the SPCCI combustion is performed and there is not the ignition retard request, the controlling module executes a control in which the entire fuel to be injected in one cycle is injected in an intake stroke and a jump-spark ignition is carried out at a basic ignition timing, and when there is the ignition retard request, the controlling module executes a control in which an injection is performed in an intake stroke, a portion of the entire fuel is injected in a compression stroke, and the ignition timing is retarded from the basic ignition timing.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 30, 2020
    Inventors: Tatsuhiro Tokunaga, Masanari Sueoka, Keiji Maruyama, Tomohiro Nishida, Takuya Ohura, Toru Miyamoto, Junichi Taga, Hideki Omori, Kenji Tanimura, Hiroyuki Yabe
  • Patent number: 10704523
    Abstract: A control system of a compression-ignition engine includes an intake variable mechanism and a controller. In a second operating range, the controller controls the intake variable mechanism so that, while partial compression-ignition combustion is performed under an air-fuel ratio (A/F) lean environment, an intake valve open timing takes timing at an advanced side of an exhaust TDC. In a first operating range on a lower load side, the controller controls the intake variable mechanism so that, while the partial compression-ignition combustion is performed under the A/F lean environment, under the same engine speed condition, the intake valve close timing is more retarded within a range on a retarded side of an intake BDC as the engine load decreases, and an absolute value of a change rate of the intake valve close timing to the engine load becomes larger than in the second range.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: July 7, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10704524
    Abstract: A control system of a compression-ignition engine which performs SPCCI combustion in which mixture gas is ignited with a spark plug to be partially combusted by SI combustion and the rest of mixture gas self-ignites to be combusted by CI combustion, is provided. When the engine is operated at least in a given first operating range, a controller of the device controls a variable intake mechanism so that an A/F lean environment where an air-fuel ratio in a cylinder becomes higher than a stoichiometric air-fuel ratio is formed, while causing the spark plug to perform spark ignition at a given timing so that the mixture gas combusts by SPCCI combustion, and controls so that, under the same engine load condition, an intake valve close timing is more retarded as the engine speed decreases, within a range where an amount of air inside the cylinder decreases by retarding the close timing.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: July 7, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Patent number: 10704480
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber, an injector, a spark plug, a swirl valve provided to an intake passage of the engine, and a controller connected to the injector, the spark plug, and the swirl valve to control them. The controller includes a processor configured to execute a swirl adjusting module to control an opening of the swirl valve so as to make the opening of the swirl valve smaller as an engine speed decreases and output a control signal to the injector to inject the fuel after the control of the swirl valve, and a combustion controlling module to output an ignition instruction to the spark plug so as to ignite at a given ignition timing after the EGR ratio adjustment, so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 7, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641197
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber, an injector configured to supply fuel into the combustion chamber, a spark plug, a swirl valve provided to an intake passage of the engine, and a controller. The controller includes a processor configured to execute a swirl adjusting module to adjust a swirl valve opening to generate a swirl flow inside the combustion chamber, a fuel injection amount controlling module to control fuel injection amounts of pre-injection and post-injection so as to increase a ratio of an injection amount of the post-injection to a total fuel injection amount into the combustion chamber in one cycle as an engine speed increases, and a combustion controlling module to control the spark plug to ignite at a given ignition timing after the swirl generation and fuel injection, so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641192
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber formed by a cylinder, a piston and a cylinder head, an injector, a spark plug, an exhaust gas recirculation (EGR) device configured to introduce into the combustion chamber a portion of burned gas generated inside the combustion chamber as EGR gas, an EGR controller to change an EGR ratio, the EGR controller changing the EGR ratio so that a compression start temperature of the combustion chamber rises as an engine speed increases, and a controller connected to the injector and the spark plug to control them. The controller includes a processor configured to execute a combustion controlling module to output an ignition instruction to the spark plug so as to ignite at an ignition timing after the EGR ratio adjustment so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10641193
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber formed by a cylinder, a piston and a cylinder head, an injector, a spark plug, an exhaust gas recirculation (EGR) device configured to introduce into the combustion chamber a portion of burned gas generated inside the combustion chamber as EGR gas, an EGR controller configured to change an EGR ratio, the EGR controller changing the EGR ratio so that a compression start temperature of the combustion chamber rises as an engine load is reduced, and a controller connected to the injector and the spark plug to control them. The controller includes a processor configured to execute a combustion controlling module to output an instruction to the spark plug so as to ignite at an ignition timing after the EGR ratio adjustment so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 5, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Patent number: 10605193
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine having a combustion chamber, an injector configured to supply fuel into the combustion chamber, a spark plug, a swirl valve provided to an intake passage of the engine, and a controller connected to the injector, the spark plug and the swirl valve to control them. The controller includes a processor configured to execute a swirl adjusting module to adjust an opening of the swirl valve to generate a swirl flow inside the combustion chamber, a fuel injection timing controlling module to control a fuel injection timing and control the injector to retard the fuel injection timing as an engine speed increases, and a combustion controlling module to control the spark plug to ignite at a given ignition timing after the swirl generation and the fuel injection, so that partial compression-ignition combustion is performed.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: March 31, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Masanari Sueoka, Takuya Ohura, Tatsuhiro Tokunaga, Keiji Maruyama, Tomohiro Nishida
  • Publication number: 20190360368
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A controller outputs a signal to a injector and a variable valve operating mechanism so that a gas-fuel ratio (G/F) becomes leaner than a stoichiometric air fuel ratio, and an air-fuel ratio (A/F) becomes equal to or richer than the stoichiometric air fuel ratio, and to an ignition plug so that unburnt mixture gas combusts by self-ignition after the ignition plug ignites mixture gas inside a combustion chamber. The method includes steps of determining a geometric compression ratio and determining the control logic defining an intake valve close timing IVC. IVC (deg.aBDC) is determined so that the following expression is satisfied: if the geometric compression ratio ? is 10??<17, 0.4234?2?22.926?+207.84+C?IVC??0.4234?2+22.926??167.84+C where C is a correction term according to an engine speed NE (rpm), C=3.3×10?10NE3?1.0×10?6NE2+7.0×10?4NE.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Masatoshi Hidaka, Toshiaki Takahashi, Tatsuhiro Tokunaga
  • Publication number: 20190360422
    Abstract: A method of implementing control logic of a compression-ignition engine is provided. A control part of the engine performs a calculation according to the control logic corresponding to an engine operating state in response to a measurement of a measurement part, controls a fuel injection part, a variable valve operating mechanism, an ignition part and a supercharger so that a G/F becomes leaner than a stoichiometric air fuel ratio and a A/F becomes equal to or richer than the stoichiometric air fuel ratio, while causing the supercharger to boost, and controls the ignition part so that unburnt mixture gas combusts by self-ignition after the ignition. The method includes determining a supercharging pressure P, and determining control logic defining a close timing IVC of an intake valve. When determining the control logic, the close timing IVC (deg.aBDC) is determined so that the supercharging pressure P (kPa) satisfies the following expression: P?8.0×10?11IVC6?1.0×10?8IVC5+3.0×10?7IVC4?4.0×10?6IVC3+0.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 28, 2019
    Inventors: Masanari Sueoka, Atsushi Inoue, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga
  • Publication number: 20190360382
    Abstract: A compression-ignition engine control system is provided, which includes an intake variable mechanism and a controller. Within a first operating range and a second operating range on a higher engine load side, the controller controls the variable mechanism to form a gas-fuel ratio (G/F) lean environment in which an air-fuel ratio inside a cylinder is near a stoichiometric air-fuel ratio and burnt gas remains inside the cylinder, and controls a spark plug to spark-ignite mixture gas inside the cylinder to combust in a partial compression-ignition combustion. The controller controls the variable mechanism to advance the intake valve open timing on an advancing side of a TDC of the exhaust stroke, as the engine load increases within the first range, and retard the intake valve open timing on the advancing side of the TDC of the exhaust stroke, as the engine load increases within the second range.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 28, 2019
    Inventors: Atsushi Inoue, Masanari Sueoka, Keiji Maruyama, Takuya Ohura, Tomohiro Nishida, Yusuke Kawai, Tetsuya Chikada, Tatsuhiro Tokunaga