Patents by Inventor Tomohiro Suetsuna

Tomohiro Suetsuna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10513760
    Abstract: Provided is a method for producing a magnetic material. The method includes preparing magnetic metal particles containing at least one magnetic metal selected from a first group consisting of Fe, Co and Ni, and at least one non-magnetic metal selected from a second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, Ba, Sr, Cr, Mo, Ag, Ga, Sc, V, Y, Nb, Pb, Cu, In, Sn and rare earth elements, pulverizing and reaggregating the magnetic metal particles, and thereby forming composite particles containing a magnetic metal phase and an interstitial phase, and heat-treating the composite particles at a temperature of from 50° C. to 800° C. The particle size distribution of the magnetic metal particles in the preparing magnetic metal particles has two or more peaks.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: December 24, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Koichi Harada, Tomoko Eguchi, Toshihide Takahashi, Seiichi Suenaga
  • Publication number: 20190283127
    Abstract: Provided is a plurality of flaky magnetic metal particles of embodiments, each flaky magnetic metal particle having a flat surface having either or both of a plurality of concavities and a plurality of convexities, the concavities or convexities being arranged in a first direction and each having a width of 0.1 ?m or more, a length of 1 ?m or more, and an aspect ratio of 2 or higher; and a magnetic metal phase containing at least one primary element selected from the group consisting of iron (Fe), cobalt (Co), and nickel (Ni). The flaky magnetic metal particles have an average thickness of between 10 nm and 100 ?m inclusive, and the average value of the ratio of the average length within the flat surface with respect to the thickness is between 5 and 10,000 inclusive.
    Type: Application
    Filed: August 21, 2018
    Publication date: September 19, 2019
    Inventors: Hiroaki Kinouchi, Tomohiro Suetsuna, Takahiro Kawamoto, Yasuyuki Hotta
  • Publication number: 20190238021
    Abstract: The magnetic wedge of embodiments is a magnetic wedge used for a rotating electrical machine and includes magnetic bodies having a planar structure having a principal plane. The principal planes of the magnetic bodies are disposed approximately perpendicularly to the air-gap surface between a stator and a rotor of a rotating electrical machine. The magnetic bodies have differences in the axial direction magnetic permeability in the axial direction of the rotating electrical machine, the rotational direction magnetic permeability in the direction of rotation, and the diametric direction magnetic permeability in the direction of the diameter.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 1, 2019
    Inventors: Hiroaki Kinouchi, Tomohiro Suetsuna, Takahiro Kawamoto
  • Patent number: 10090088
    Abstract: The soft magnetic material of embodiments includes flattened magnetic metal particles including at least one magnetic metal selected from iron (Fe), cobalt (Co) and nickel (Ni), each of the flattened magnetic metal particles having a thickness of from 10 nm to 100 ?m, an aspect ratio of from 5 to 10,000, and a lattice strain of from 0.01% to 10%, and being oriented with magnetic anisotropy in one direction within aligned flattened surface; and an interposed phase existing between the flattened magnetic metal particles and including at least one of oxygen (O), carbon (C), nitrogen (N) and fluorine (F).
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: October 2, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Tomoko Eguchi, Kouichi Harada, Seiichi Suenaga, Hiroaki Kinouchi
  • Publication number: 20180258513
    Abstract: Provided is a plurality of flaky magnetic metal particles of the embodiments, each flaky magnetic metal particle having a flat surface provided with either or both of a plurality of concavities and a plurality of convexities arranged in a first direction, each concavity or convexity having a width of 0.1 ?m or more, a length of 1 ?m or more, and an aspect ratio of 2 or higher; and at least one first element selected from the group consisting of iron (Fe), cobalt (Co), and nickel (Ni), the flaky magnetic metal particles having an average thickness of between 10 nm and 100 ?m inclusive and an average aspect ratio of between 5 and 10,000 inclusive.
    Type: Application
    Filed: September 1, 2017
    Publication date: September 13, 2018
    Inventors: Tomohiro Suetsuna, Hiroaki Kinouchi, Takahiro Kawamoto
  • Patent number: 10071421
    Abstract: The flaky magnetic metal particles of the embodiments include a plurality of flaky magnetic metal particles, each of the flaky magnetic metal particles including a first magnetic particle including a flat surface, at least one first element selected from the group consisting of Fe, Co and Ni, an average ratio between the maximum length and the minimum length in the flat surface being between 1 and 5 inclusive, an average thickness of the first magnetic particles being between 10 nm and 100 ?m inclusive, an average aspect ratio of the first magnetic particles being between 5 and 10000 inclusive; and a plurality of second magnetic particles disposed on the flat surface, an average number of the second magnetic particles being five or more, an average diameter of the second magnetic particles being between 10 nm and 1 ?m inclusive.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: September 11, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Tomoko Eguchi, Hiroaki Kinouchi
  • Patent number: 9997289
    Abstract: Provided is a magnetic material including a plurality of flat particles containing a magnetic metal, and a matrix phase disposed around the flat particles and having higher electrical resistance than the flat particles. In a cross-section of the magnetic material, the aspect ratio of the flat particles is 10 or higher. If the major axis of one of the flat particles is designated as L and the length of a straight line connecting two endpoints of the flat particle is designated as W, the proportion of the area surrounded by the outer peripheries of parts in which flat particles satisfying the relationship: W ?0.95×L are continuously laminated, is 10% or more of the cross-section.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: June 12, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Eguchi, Tomohiro Suetsuna, Koichi Harada, Toshihide Takahashi, Seiichi Suenaga
  • Publication number: 20170209924
    Abstract: The flaky magnetic metal particles of the embodiments include a plurality of flaky magnetic metal particles, each of the flaky magnetic metal particles including a first magnetic particle including a flat surface, at least one first element selected from the group consisting of Fe, Co and Ni, an average ratio between the maximum length and the minimum length in the flat surface being between 1 and 5 inclusive, an average thickness of the first magnetic particles being between 10 nm and 100 ?m inclusive, an average aspect ratio of the first magnetic particles being between 5 and 10000 inclusive; and a plurality of second magnetic particles disposed on the flat surface, an average number of the second magnetic particles being five or more, an average diameter of the second magnetic particles being between 10 nm and 1 ?m inclusive.
    Type: Application
    Filed: September 8, 2016
    Publication date: July 27, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Tomoko EGUCHI, Hiroaki KINOUCHI
  • Publication number: 20170076845
    Abstract: The soft magnetic material of embodiments includes flattened magnetic metal particles including at least one magnetic metal selected from iron (Fe), cobalt (Co) and nickel (Ni), each of the flattened magnetic metal particles having a thickness of from 10 nm to 100 ?m, an aspect ratio of from 5 to 10,000, and a lattice strain of from 0.01% to 10%, and being oriented with magnetic anisotropy in one direction within aligned flattened surface; and an interposed phase existing between the flattened magnetic metal particles and including at least one of oxygen (O), carbon (C), nitrogen (N) and fluorine (F).
    Type: Application
    Filed: September 8, 2016
    Publication date: March 16, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Tomoko Eguchi, Kouichi Harada, Seiichi Suenaga, Hiroaki Kinouchi
  • Patent number: 9450312
    Abstract: A magnetic metal particle aggregate includes a plurality of magnetic metal particles including at least one magnetic metal selected from a first group consisting of Fe, Co, and Ni. The plurality of magnetic metal particles are partly bound with each other, and an average particle diameter of the plurality of magnetic metal particles is 10 nm or more and 50 nm or less. The magnetic metal particle aggregate has an average particle diameter of 15 nm or more and 200 nm or less.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: September 20, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihide Takahashi, Tomohiro Suetsuna, Koichi Harada, Seiichi Suenaga, Tomoko Eguchi
  • Patent number: 9362033
    Abstract: A magnetic material is disclosed, which includes magnetic particles containing at least one magnetic metal selected from the group including Fe, Co and Ni, and at least one non-magnetic metal selected from Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare earth elements, Ba and Sr; a first coating layer of a first oxide that covers at least a portion of the magnetic particles; oxide particles of a second oxide that is present between the magnetic particles and constitutes an eutectic reaction system with the first oxide; and an oxide phase that is present between the magnetic particles and has an eutectic structure of the first oxide and the second oxide.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: June 7, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro Suetsuna, Seiichi Suenaga, Toshihide Takahashi, Tomoko Eguchi, Koichi Harada, Yasuyuki Hotta
  • Patent number: 9318809
    Abstract: A radio wave absorber according to an embodiment includes a plurality of metal particles including at least one kind of magnetic metal element selected from a first group of Fe, Co, and Ni. Each of the plurality of metal particles has a linear expansion coefficient of 1×10?6/K or more and 10×10?6/K or less. The radio wave absorber also includes a binding layer binding the metal particles and having higher resistance than the metal particle, wherein a volume filling ratio of the metal particles in the radio wave absorber is 10% or more and 50% or less.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: April 19, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihide Takahashi, Tomohiro Suetsuna, Koichi Harada, Tomoko Eguchi, Seiichi Suenaga
  • Publication number: 20160086705
    Abstract: Provided is a magnetic material including a plurality of flat particles containing a magnetic metal, and a matrix phase disposed around the flat particles and having higher electrical resistance than the flat particles. In a cross-section of the magnetic material, the aspect ratio of the flat particles is 10 or higher. If the major axis of one of the flat particles is designated as L and the length of a straight line connecting two endpoints of the flat particle is designated as W, the proportion of the area surrounded by the outer peripheries of parts in which flat particles satisfying the relationship: W?0.95×L are continuously laminated, is 10% or more of the cross-section.
    Type: Application
    Filed: September 1, 2015
    Publication date: March 24, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomoko EGUCHI, Tomohiro SUETSUNA, Koichi HARADA, Toshihide TAKAHASHI, Seiichi SUENAGA
  • Publication number: 20160086728
    Abstract: Provided is a method for producing a magnetic material. The method includes preparing magnetic metal particles containing at least one magnetic metal selected from a first group consisting of Fe, Co and Ni, and at least one non-magnetic metal selected from a second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, Ba, Sr, Cr, Mo, Ag, Ga, Sc, V, Y, Nb, Pb, Cu, In, Sn and rare earth elements, pulverizing and reaggregating the magnetic metal particles, and thereby forming composite particles containing a magnetic metal phase and an interstitial phase, and heat-treating the composite particles at a temperature of from 50° C. to 800° C. The particle size distribution of the magnetic metal particles in the preparing magnetic metal particles has two or more peaks.
    Type: Application
    Filed: September 1, 2015
    Publication date: March 24, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Koichi Harada, Tomoko Eguchi, Toshihide Takahashi, Seiichi Suenaga
  • Publication number: 20160086717
    Abstract: Provided is a magnetic material which includes a plurality of magnetic metal particles having a rate of change in the lattice constant of ±1% or less with respect to the lattice constant obtained after a heat treatment at 1000° C., a plurality of insulating coating layers insulating and covering at least a portion of the magnetic metal particles, and an insulating resin disposed around the magnetic metal particles and the insulating coating layers. The insulating coating layers are in contact with one another.
    Type: Application
    Filed: September 1, 2015
    Publication date: March 24, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Koichi HARADA, Toshihide TAKAHASHI, Tomohiro SUETSUNA, Tomoko EGUCHI, Seiichi SUENAGA
  • Publication number: 20160086700
    Abstract: Provided is a method for producing a magnetic material, the method including preparing a mixed phase material including a first magnetic metal phase formed from a magnetic metal and a second phase containing any one of oxygen (O), nitrogen (N) or carbon (C) and a non-magnetic metal, conducting a first heat treatment to the mixed phase material at a temperature of from 50° C. to 800° C., forming nanoparticle aggregates including a plurality of magnetic metal nanoparticles formed from the first magnetic metal phase and the second phase, and conducting a second heat treatment to the nanoparticle aggregates at a temperature of from 50° C. to 800° C. The nanoparticle aggregates are formed by decreasing an average particle size and a particle size distribution variation of the first magnetic metal phase after the first heat treatment.
    Type: Application
    Filed: September 2, 2015
    Publication date: March 24, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Koichi HARADA, Tomoko EGUCHI, Toshihide TAKAHASHI, Seiichi SUENAGA
  • Patent number: 9225072
    Abstract: A radiowave absorber of an embodiment includes: core-shell particles each including: a core portion that contains at least one magnetic metal element selected from a first group including Fe, Co, and Ni, and at least one metal element selected from a second group including Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare-earth elements, Ba, and Sr; and a shell layer that coats at least part of the core portion, and includes an oxide layer containing at least one metal element selected from the second group and contained in the core portion; and a binding layer that binds the core-shell particles, and has a higher resistance than the resistance of the core-shell particles. The volume filling rate of the core-shell particles in the radiowave absorber is not lower than 10% and not higher than 55%.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: December 29, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihide Takahashi, Tomohiro Suetsuna, Koichi Harada, Seiichi Suenaga
  • Publication number: 20150303583
    Abstract: A radio wave absorber according to an embodiment includes a plurality of metal particles including at least one kind of magnetic metal element selected from a first group of Fe, Co, and Ni. Each of the plurality of metal particles has a linear expansion coefficient of 1×10?6/K or more and 10×10?6/K or less. The radio wave absorber also includes a binding layer binding the metal particles and having higher resistance than the metal particle, wherein a volume filling ratio of the metal particles in the radio wave absorber is 10% or more and 50% or less.
    Type: Application
    Filed: September 9, 2014
    Publication date: October 22, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Toshihide TAKAHASHI, Tomohiro Suetsuna, Koichi Harada, Tomoko Eguchi, Seiichi Suenaga
  • Publication number: 20150083959
    Abstract: A magnetic material of an embodiment includes a plurality of magnetic metal particles, a plurality of columnar oxide particles, and a matrix phase. Each of the plurality of the magnetic metal particles includes at least one element selected from a first group consisting of Fe, Co, and Ni. Each of the plurality of the columnar oxide particles includes at least one oxide selected from a second group consisting of Al2O3, SiO2, and TiO2 and is in contact with the magnetic metal particle. The matrix phase has a higher electrical resistance than each of the plurality of the magnetic metal particles. The matrix phase surrounds the plurality of magnetic metal particles and the plurality of columnar oxide particles. In the magnetic material, 5 nm?l?L and 0.002?L/R?0.4 hold, where R represents a particle size of the magnetic metal particle, L represents a length of the columnar oxide particle, and l represents a breadth of the columnar oxide particle.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 26, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomoko EGUCHI, Seiichi SUENAGA, Koichi HARADA, Tomohiro SUETSUNA, Toshihide TAKAHASHI
  • Publication number: 20150084804
    Abstract: A magnetic metal particle aggregate includes a plurality of magnetic metal particles including at least one magnetic metal selected from a first group consisting of Fe, Co, and Ni. The plurality of magnetic metal particles are partly bound with each other, and an average particle diameter of the plurality of magnetic metal particles is 10 nm or more and 50 nm or less. The magnetic metal particle aggregate has an average particle diameter of 15 nm or more and 200 nm or less.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 26, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Toshihide TAKAHASHI, Tomohiro Suetsuna, Koichi Harada, Seiichi Suenaga, Tomoko Eguchi