Patents by Inventor Tomohiro Yakuwa

Tomohiro Yakuwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8258059
    Abstract: High voltage-resistant semiconductor devices adapted to control threshold voltage by utilizing threshold voltage variation caused by plasma damage resulting from the formation of multilayer wiring, and a manufacturing method thereof. Exemplary high voltage-resistant semiconductor devices include a plurality of MOS transistors having gate insulating films not less than about 350 ? in thickness on a silicon substrate, and the MOS transistors have different area ratios between gate electrode-gate insulating film contact areas and total opening areas of contacts formed on the gate electrodes.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 4, 2012
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Tomohiro Yakuwa
  • Publication number: 20110097865
    Abstract: High voltage-resistant semiconductor devices adapted to control threshold voltage by utilizing threshold voltage variation caused by plasma damage resulting from the formation of multilayer wiring, and a manufacturing method thereof. Exemplary high voltage-resistant semiconductor devices include a plurality of MOS transistors having gate insulating films not less than about 350 ? in thickness on a silicon substrate, and the MOS transistors have different area ratios between gate electrode-gate insulating film contact areas and total opening areas of contacts formed on the gate electrodes.
    Type: Application
    Filed: January 3, 2011
    Publication date: April 28, 2011
    Inventor: Tomohiro Yakuwa
  • Patent number: 7872354
    Abstract: High voltage-resistant semiconductor devices adapted to control threshold voltage by utilizing threshold voltage variation caused by plasma damage resulting from the formation of multilayer wiring, and a manufacturing method thereof. Exemplary high voltage-resistant semiconductor devices include a plurality of MOS transistors having gate insulating films not less than about 350 ? in thickness on a silicon substrate, and the MOS transistors have different area ratios between gate electrode-gate insulating film contact areas and total opening areas of contacts formed on the gate electrodes.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: January 18, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Tomohiro Yakuwa
  • Publication number: 20100093162
    Abstract: A method of manufacturing a semiconductor device wherein semiconductor elements (e.g., transistors) respectively formed in multiple independent wells have the same characteristics with the number of production process steps being reduced. A P-type well as an area of a first conductivity type is formed on a semiconductor substrate. Then, second and fourth wells as two regions of a second conductivity type are formed apart from each other in the P-type well, and a first buried well of N-type as a first buried region of the second conductivity type to connect the second and fourth wells is formed at the bottom of a third well (part of the area of the first conductivity type) sandwiched between the second and fourth wells. In this way, a triple well is formed on the semiconductor substrate.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 15, 2010
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Tomohiro Yakuwa
  • Publication number: 20090236671
    Abstract: High voltage-resistant semiconductor devices adapted to control threshold voltage by utilizing threshold voltage variation caused by plasma damage resulting from the formation of multilayer wiring, and a manufacturing method thereof. Exemplary high voltage-resistant semiconductor devices include a plurality of MOS transistors having gate insulating films not less than about 350 ? in thickness on a silicon substrate, and the MOS transistors have different area ratios between gate electrode-gate insulating film contact areas and total opening areas of contacts formed on the gate electrodes.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 24, 2009
    Inventor: Tomohiro Yakuwa