Patents by Inventor Tomohiro Yonemichi

Tomohiro Yonemichi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9938617
    Abstract: The invention relates to a process for depositing under vacuum a multilayers coating stack on a flat glass substrate and to a modular coater for the deposit of thin layers on a flat glass substrate. A gas separation zone disposed between two depositing zones of the modular coater comprises at least one gas injector in the vicinity of the convoying path for the glass substrate which passes through apertures from a depositing zone towards the other depositing zone via the separation zone. The invention allows improvement of the separation factor between the two depositing zones.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 10, 2018
    Assignee: AGC Glass Europe
    Inventors: Benoit Lecomte, Hugues Wiame, Tomohiro Yonemichi
  • Patent number: 9309148
    Abstract: An area S (m2) of a facing surface of each of injectors which faces a glass ribbon is set so as to satisfy: S?(0.0116×P×Cg×T)/{?×F×?(Tgla4?Tinj4)}, wherein P is an output (ton/day) of the glass ribbon; Cg is a specific heat (J/(kg·° C.)) of the glass; T is an acceptable temperature drop (° C.); ? is radiation factor; F is a surface-to-surface view factor; ? is Boltzmann's constant; Tgla is a temperature (K) of the glass ribbon represented by K=(Tin+Tout)/2 where Tin and Tout are measured values of the glass ribbon at the inlet and outlet of the injector, respectively; and Tinj is a temperature (K) of the facing surface of the injector.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: April 12, 2016
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kuniaki Hiromatsu, Masanobu Shirai, Junichi Miyashita, Tomohiro Yonemichi, Takeo Endo
  • Publication number: 20140123706
    Abstract: A method for manufacturing a laminated film-coated glass substrate in which a laminated film is formed on a glass ribbon by a CVD method by means of a plurality of injectors disposed in an annealing furnace and the glass ribbon is cut, wherein the laminated film is formed at Tg+50° C. or lower and at least two layers of the laminated film are formed in a temperature range of Tg+50° C. to Tg. In addition, a temperature drop K1 per unit length of the glass ribbon in a temperature range where all layers of the laminated film are formed is 0° C./m<K1<10° C./m.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kuniaki HIROMATSU, Masanobu SHIRAI, Junichi MIYASHITA, Tomohiro YONEMICHI, Takeo ENDO
  • Publication number: 20140123704
    Abstract: An area S (m2) of a facing surface of each of injectors which faces a glass ribbon is set so as to satisfy: S?(0.0116×P×Cg×T)/{?×F×?(Tgla4?Tinj4)}, wherein P is an output (ton/day) of the glass ribbon; Cg is a specific heat (J/(kg·° C.)) of the glass; T is an acceptable temperature drop (° C.); ? is radiation factor; F is a surface-to-surface view factor; ? is Boltzmann's constant; Tgla is a temperature (K) of the glass ribbon represented by K=(Tin+Tout)/2 where Tin and Tout are measured values of the glass ribbon at the inlet and outlet of the injector, respectively; and Tinj is a temperature (K) of the facing surface of the injector.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kuniaki HIROMATSU, Masanobu SHIRAI, Junichi MIYASHITA, Tomohiro YONEMICHI, Takeo ENDO
  • Publication number: 20140123707
    Abstract: A method for manufacturing a laminated film-coated glass substrate in which a laminated film is formed on a glass ribbon by a CVD method by means of a plurality of injectors disposed in the annealing furnace, wherein: the laminated film is formed at Tg+50° C. or lower; and in each of the injectors, if a quantity of heat exchanged between the injector and the glass ribbon is expressed by Q1 (kW), a quantity of heat exchanged between a heater paired with the injector and the glass ribbon is expressed by Q2 (kW), and an output of the glass is expressed by P (tons/day), then the relational expression |Q1|?P×0.116?|Q2|?|Q1| is satisfied.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kuniaki Hiromatsu, Masanobu Shirai, Junichi Miyashita, Tomohiro Yonemichi, Takeo Endo
  • Publication number: 20130337193
    Abstract: The invention relates to a process for depositing under vacuum a multilayers coating stack on a flat glass substrate and to a modular coater for the deposit of thin layers on a flat glass substrate. A gas separation zone disposed between two depositing zones of the modular coater comprises at least one gas injector in the vicinity of the convoying path for the glass substrate which passes through apertures from a depositing zone towards the other depositing zone via the separation zone. The invention allows improvement of the separation factor between the two depositing zones.
    Type: Application
    Filed: October 18, 2011
    Publication date: December 19, 2013
    Applicant: AGC Glass Europe
    Inventors: Benoit Lecomte, Hugues Wiame, Tomohiro Yonemichi
  • Patent number: 8234884
    Abstract: The present invention provides an air-cooling/tempering device and an air-cooling/tempering method for a glass sheet, which are capable of uniformly air-cooling and tempering a glass sheet as a whole without being affected by the pitch between adjacent rollers and a roller diameter. The roller body of each roller forming the air-cooling/tempering device includes a rotary shaft formed of a guide shaft permitting a bendable action; and a plurality of ring rollers carried on the guide shaft and engaged and coupled with adjacent ring rollers; and disc rollers fixedly carried at intervals on ring rollers so as not to overlap the disc rollers on an adjacent roller with respect to a conveying direction of the glass sheet. Further, outlet modules are disposed on ring rollers between adjacent disc rollers through bearings so as to be rotatable with respect to the rotary shaft.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: August 7, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazushige Yoda, Nozomi Otsubo, Tomohiro Yonemichi, Yasumasa Kato
  • Publication number: 20110016921
    Abstract: The present invention provides an air-cooling/tempering device and an air-cooling/tempering method for a glass sheet, which are capable of uniformly air-cooling and tempering a glass sheet as a whole without being affected by the pitch between adjacent rollers and a roller diameter. The roller body of each roller forming the air-cooling/tempering device includes a rotary shaft formed of a guide shaft permitting a bendable action; and a plurality of ring rollers carried on the guide shaft and engaged and coupled with adjacent ring rollers; and disc rollers fixedly carried at intervals on ring rollers so as not to overlap the disc rollers on an adjacent roller with respect to a conveying direction of the glass sheet. Further, outlet modules are disposed on ring rollers between adjacent disc rollers through bearings so as to be rotatable with respect to the rotary shaft.
    Type: Application
    Filed: September 30, 2010
    Publication date: January 27, 2011
    Applicant: Asahi Glass Company, Limited
    Inventors: Kazushige YODA, Nozomi OTSUBO, Tomohiro YONEMICHI, Yasumasa KATO