Patents by Inventor Tomoki Noborisato

Tomoki Noborisato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12172124
    Abstract: A carbon dioxide recovery system includes: a plurality of absorption towers each disposed for each of a plurality of combustion equipments for absorbing carbon dioxide in an exhaust gas discharged from each of the plurality of combustion equipments into an absorption liquid by bringing the exhaust gas into contact with the absorption liquid; and at least one regeneration tower communicating with each of the plurality of absorption towers, for recovering carbon dioxide from a CO2 rich absorption liquid which is the absorption liquid flowing out of each of the plurality of absorption towers. The regeneration tower is smaller in number than the absorption towers.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: December 24, 2024
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tomoki Noborisato, Takashi Kamijo
  • Publication number: 20240342686
    Abstract: A composite amine absorbent that absorbs at least one of CO2 and H2S in a gas includes: (a) a chain monoamine; (b) a diamine containing amino groups having the same number of substituents; (c) a chain diamine containing amino groups having different numbers of substituents; and (d) water.
    Type: Application
    Filed: August 24, 2022
    Publication date: October 17, 2024
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., The Kansai Electric Power Co., Inc.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Takuya Sugiura, Takashi Kamijo, Tomoki Noborisato
  • Patent number: 11772041
    Abstract: A composite amine absorbent according to the present invention is an absorbent for absorbing CO2 or H2S, or both of CO2 and H2S in a gas. The absorbent is obtained by dissolving (1) a linear monoamine, (2) a diamine, and (3) propylene glycol alkyl ether, for example, represented by the following chemical formula (I) in water. In the composite amine absorbent, the components complexly interact, and the synergistic effect thereof provides good absorbability of CO2 or H2S, or both of CO2 and H2S and good releasability of CO2 or H2S absorbed during regeneration of the absorbent. Furthermore, the amount of water vapor in a reboiler 26 used during regeneration of the absorbent in a CO2 recovery unit 12 can be reduced.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: October 3, 2023
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., The Kansai Electric Power Co., Inc.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Takashi Kamijo, Tomoki Noborisato
  • Publication number: 20220288527
    Abstract: A carbon dioxide recovery system includes: a plurality of absorption towers each disposed for each of a plurality of combustion equipments for absorbing carbon dioxide in an exhaust gas discharged from each of the plurality of combustion equipments into an absorption liquid by bringing the exhaust gas into contact with the absorption liquid; and at least one regeneration tower communicating with each of the plurality of absorption towers, for recovering carbon dioxide from a CO2 rich absorption liquid which is the absorption liquid flowing out of each of the plurality of absorption towers. The regeneration tower is smaller in number than the absorption towers.
    Type: Application
    Filed: August 3, 2020
    Publication date: September 15, 2022
    Applicant: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Tomoki Noborisato, Takashi Kamijo
  • Publication number: 20220096996
    Abstract: A composite amine absorbent according to the present invention is an absorbent for absorbing CO2 or H2S, or both of CO2 and H2S in a gas. The absorbent is obtained by dissolving (1) a linear monoamine, (2) a diamine, and (3) propylene glycol alkyl ether, for example, represented by the following chemical formula (I) in water. In the composite amine absorbent, the components complexly interact, and the synergistic effect thereof provides good absorbability of CO2 or H2S, or both of CO2 and H2S and good releasability of CO2 or H2S absorbed during regeneration of the absorbent. Furthermore, the amount of water vapor in a reboiler 26 used during regeneration of the absorbent in a CO2 recovery unit 12 can be reduced.
    Type: Application
    Filed: December 4, 2019
    Publication date: March 31, 2022
    Applicants: Mitsubishi Heavy Industries Engineering, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Takashi Kamijo, Tomoki Noborisato
  • Patent number: 10610820
    Abstract: Provided are: a wet desulfurization apparatus 13 which removes sulfur oxides in flue gas 12A from a boiler 11; a mist collection/agglomeration apparatus 14 which is provided on a downstream side of the desulfurization apparatus 13 and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus 13 to be bonded together and have bloated particle sizes; a CO2 recovery apparatus 18 constituted by a CO2 absorption tower 16 having a CO2 absorption unit 16A which removes CO2 contained in flue gas 12D by being brought into contact with a CO2 absorbent and an absorbent regeneration tower 17 which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit 16C which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit 16A.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: April 7, 2020
    Assignees: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Publication number: 20190255483
    Abstract: Provided are: a wet desulfurization apparatus 13 which removes sulfur oxides in flue gas 12A from a boiler 11; a mist collection/agglomeration apparatus 14 which is provided on a downstream side of the desulfurization apparatus 13 and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus 13 to be bonded together and have bloated particle sizes; a CO2 recovery apparatus 18 constituted by a CO2 absorption tower 16 having a CO2 absorption unit 16A which removes CO2 contained in flue gas 12D by being brought into contact with a CO2 absorbent and an absorbent regeneration tower 17 which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit 16C which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit 16A.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Applicants: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Patent number: 10328383
    Abstract: A wet desulfurization apparatus which removes sulfur oxides in flue gas from a boiler 11 includes a mist collection/agglomeration apparatus which is provided on a downstream side of the desulfurization apparatus and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus to be bonded together and have bloated particle sizes; a CO2 recovery apparatus constituted by a CO2 absorption tower having a CO2 absorption unit which removes CO2 contained in flue gas by being brought into contact with a CO2 absorbent and an absorbent regeneration tower which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: June 25, 2019
    Assignees: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Patent number: 10010828
    Abstract: A filtration membrane device which uses a filter to collect solid contents remaining in a branched lean solution cleans the filter by using a low-concentration CO2 absorption liquid circulating within the system as cleaning water (containing the absorption liquid); rough cleaning, which returns the low-concentration CO2 absorption liquid used for cleaning to a lean solution supply line, is performed; the filter is finish-cleaned by cleaning water from outside the system which does not include the CO2 absorption liquid; the CO2 absorption liquid which is adhered to the solid contents is washed and removed; finish-cleaning water which includes the CO2 absorption liquid is returned to the lean solution supply line the moisture content within the system is maintained at a prescribed value by adjusting the water balance in an absorption tower and the concentration of the CO2 absorption liquid which circulates within the system is kept at a prescribed concentration.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: July 3, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Hiroshi Tanaka, Tomoki Noborisato, Tsuyoshi Oishi
  • Publication number: 20170341014
    Abstract: A wet desulfurization apparatus which removes sulfur oxides in flue gas from a boiler 11 includes a mist collection/agglomeration apparatus which is provided on a downstream side of the desulfurization apparatus and forms agglomerated SO3 mist by causing particles of SO3 mist contained in flue gas 12B from the wet desulfurization apparatus to be bonded together and have bloated particle sizes; a CO2 recovery apparatus constituted by a CO2 absorption tower having a CO2 absorption unit which removes CO2 contained in flue gas by being brought into contact with a CO2 absorbent and an absorbent regeneration tower which recovers CO2 by releasing CO2 from the CO2 absorbent having absorbed CO2 and regenerates the CO2 absorbent; and a mist collection unit which collects CO2 absorbent bloated mist bloated by the CO2 absorbent being absorbed by the agglomerated SO3 mist in the CO2 absorption unit.
    Type: Application
    Filed: September 24, 2015
    Publication date: November 30, 2017
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., MITSUBISHI HITACHI POWER SYSTEMS ENVIRONMENTAL SOLUTIONS, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Yasutoshi Ueda, Tomoki Noborisato, Takao Tanaka, Masaya Kato
  • Patent number: 9568193
    Abstract: An air pollution control system includes: a desulfurization device which removes sulfur oxides in a flue gas generated from a boiler; a cooler which is provided at the downstream side of the desulfurization device, decreases a flue gas temperature and enlarges a particle diameter of SO3 mist contained in the flue gas through cooling or heating the flue gas by a temperature adjustment means for adjusting a gas dew point temperature of the flue gas; and a CO2 recovery device which includes a CO2 absorber bringing CO2 in the flue gas into contact with the CO2 absorbent so as to remove CO2 therefrom and a regenerator recovering CO2 by dissociating CO2 from the CO2 absorbent and regenerating the CO2 absorbent, wherein the flue gas is cooled by a cooling unit so as to enlarge the SO3 mist in the flue gas.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: February 14, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tsuyoshi Oishi, Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Yoshinori Kajiya, Tomoki Noborisato
  • Publication number: 20160121260
    Abstract: A filtration membrane device which uses a filter to collect solid contents remaining in a branched lean solution cleans the filter by using a low-concentration CO2 absorption liquid circulating within the system as cleaning water (containing the absorption liquid); rough cleaning, which returns the low-concentration CO2 absorption liquid used for cleaning to a lean solution supply line, is performed; the filter is finish-cleaned by cleaning water from outside the system which does not include the CO2 absorption liquid; the CO2 absorption liquid which is adhered to the solid contents is washed and removed; finish-cleaning water which includes the CO2 absorption liquid is returned to the lean solution supply line the moisture content within the system is maintained at a prescribed value by adjusting the water balance in an absorption tower and the concentration of the CO2 absorption liquid which circulates within the system is kept at a prescribed concentration.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 5, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Hiromitsu Nagayasu, Hiroshi Tanaka, Tomoki Noborisato, Tsuyoshi Oishi
  • Publication number: 20150241059
    Abstract: An air pollution control system includes: a desulfurization device which removes sulfur oxides in a flue gas generated from a boiler; a cooler which is provided at the downstream side of the desulfurization device, decreases a flue gas temperature and enlarges a particle diameter of SO3 mist contained in the flue gas through cooling or heating the flue gas by a temperature adjustment means for adjusting a gas dew point temperature of the flue gas; and a CO2 recovery device which includes a CO2 absorber bringing CO2 in the flue gas into contact with the CO2 absorbent so as to remove CO2 therefrom and a regenerator recovering CO2 by dissociating CO2 from the CO2 absorbent and regenerating the CO2 absorbent, wherein the flue gas is cooled by a cooling unit so as to enlarge the SO3 mist in the flue gas.
    Type: Application
    Filed: October 11, 2012
    Publication date: August 27, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tsuyoshi Oishi, Hiroshi Tanaka, Hiromitsu Nagayasu, Takuya Hirata, Yoshinori Kajiya, Tomoki Noborisato