Patents by Inventor Tomoki Uemura

Tomoki Uemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090127663
    Abstract: A growing method of a group III nitride semiconductor crystal includes the steps of preparing an underlying substrate, and growing a group III nitride semiconductor crystal doped with silicon by using silicon tetrafluoride gas as doping gas, on the underlying substrate by vapor phase growth.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 21, 2009
    Applicant: Sumitomo Electric Industries. Ltd.
    Inventors: Takuji Okahisa, Tomohiro Kawase, Tomoki Uemura, Muneyuki Nishioka, Satoshi Arakawa
  • Publication number: 20090127664
    Abstract: A growing method of a group III nitride semiconductor crystal includes the steps of preparing an underlying substrate, and growing a first group III nitride semiconductor crystal doped with silicon by using silicon tetrachloride (SiCl4) gas as doping gas, on the underlying substrate by vapor phase growth. The growth rate of the first group III nitride semiconductor crystal is at least 200 ?m/h and not more than 2000 ?m/h.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 21, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji OKAHISA, Tomohiro Kawase, Tomoki Uemura, Muneyuki Nishioka, Satoshi Arakawa
  • Publication number: 20090127662
    Abstract: A group III nitride semiconductor crystal substrate has a diameter of at least 25 mm and not more than 160 mm. The resistivity of the group III nitride semiconductor crystal substrate is at least 1×10?4 ?·m and not more than 0.1 ?·cm. The resistivity distribution in the diameter direction of the group III nitride semiconductor crystal is at least ?30% and not more than 30%. The resistivity distribution in the thickness direction of the group III nitride semiconductor crystal is at least ?16% and not more than 16%.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 21, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Takuji Okahisa, Tomohiro Kawase, Tomoki Uemura, Muneyuki Nishioka, Satoshi Arakawa
  • Publication number: 20090032907
    Abstract: It seems that a conventional method for producing a GaN crystal by using HVPE has a possibility that the crystallinity of a GaN crystal can be improved by producing a GaN crystal at a temperature higher than 1100° C. However, such a conventional method has a problem in that a quartz reaction tube (1) is melted when heated by heaters (5) and (6) to a temperature higher than 1100° C. Disclosed herein is a method for producing a GaxIn1-xN (0?x?1) crystal (12) by growing GaxIn1-xN (0?x?1) crystal (12) on the surface of a base substrate (7) by the reaction of a material gas, containing ammonia gas and at least one of a gallium halide gas and an indium halide gas, in a quartz reaction tube (1), wherein during the growth of GaxIn1-xN (0?x?1) crystal (12), quartz reaction tube (1) is externally heated and base substrate (7) is individually heated.
    Type: Application
    Filed: August 17, 2006
    Publication date: February 5, 2009
    Inventors: Tomoki Uemura, Shinsuke Fujiwara, Takuji Okahisa, Ryu Hirota, Hideaki Nakahata
  • Publication number: 20080299375
    Abstract: An AlxGayIn1-x-yN substrate in which particles having a grain size of at least 0.2 ?m on a surface of the AlxGayIn1-x-yN substrate are at most 20 in number when a diameter of the AlxGayIn1-x-yN substrate is two inches, and a cleaning method with which the AlxGayIn1-x-yN substrate can be obtained are provided. Further, an AlxGayIn1-x-yN substrate in which, in a photoelectron spectrum of a surface of the AlxGayIn1-x-yN substrate by X-ray photoelectron spectroscopy with a detection angle of 10°, a ratio between a peak area of C1s electrons and a peak area of N1s electrons (C1s electron peak area/N1s electron peak area) is at most 3, and a cleaning method with which the AlxGayIn1-x-yN substrate can be obtained are provided.
    Type: Application
    Filed: May 8, 2008
    Publication date: December 4, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tomoki Uemura, Keiji Ishibashi, Shinsuke Fujiwara, Hideaki Nakahata
  • Publication number: 20080292877
    Abstract: The present invention provides a method of cleaning a GaAs substrate with less precipitate particles after cleaning. This cleaning method comprises an acid cleaning step (S11), a deionized water rinsing step (S12), and a rotary drying step (S13). First, a GaAs substrate with a mirror finished surface is immersed in an acid cleaning solution in the acid cleaning step (S11). In the acid cleaning step, the cleaning time is less than 30 seconds. Next, the deionized water rinsing step performs the cleaned GaAs substrate with deionized water (S12) to wash away the cleaning solution deposited thereon. Subsequently, the rotary drying step dries the GaAs substrate deposited on deionized water (S13). This provides the cleaned GaAs substrate with less precipitate particles.
    Type: Application
    Filed: April 25, 2005
    Publication date: November 27, 2008
    Inventors: Yusuke Horie, Takayuki Nishiura, Tomoki Uemura
  • Patent number: 7432186
    Abstract: Affords methods of surface treating a substrate and of manufacturing Group III-V compound semiconductors, in which a substrate made of a Group III-V semiconductor compound is rendered stoichiometric, and microscopic roughness on the surface following epitaxial growth is reduced. The methods include preparing a substrate made of a Group III-V semiconductor compound (S10), and cleaning the substrate with a cleaning solution whose pH has been adjusted to an acidity of 2 to 6.3 inclusive, and to which an oxidizing agent has been added (S20).
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: October 7, 2008
    Assignee: Sumitomo Electric Industries, Ltd
    Inventors: Takayuki Nishiura, Tomoki Uemura
  • Patent number: 7387989
    Abstract: An AlxGayIn1-x-yN substrate in which particles having a grain size of at least 0.2 ?m on a surface of the AlxGayIn1-x-yN substrate are at most 20 in number when a diameter of the AlxGayIn1-x-yN substrate is two inches, and a cleaning method with which the AlxGayIn1-x-yN substrate can be obtained are provided. Further, an AlxGayIn1-x-yN substrate in which, in a photoelectron spectrum of a surface of the AlxGayIn1-x-yN substrate by X-ray photoelectron spectroscopy with a detection angle of 10°, a ratio between a peak area of C1s electrons and a peak area of N1s electrons (C1s electron peak area/N1s electron peak area) is at most 3, and a cleaning method with which the AlxGayIn1-x-yN substrate can be obtained are provided.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: June 17, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tomoki Uemura, Keiji Ishibashi, Shinsuke Fujiwara, Hideaki Nakahata
  • Publication number: 20070014915
    Abstract: Affords methods of surface treating a substrate and of manufacturing Group III-V compound semiconductors, in which a substrate made of a Group III-V semiconductor compound is rendered stoichiometric, and microscopic roughness on the surface following epitaxial growth is reduced. The methods include preparing a substrate made of a Group III-V semiconductor compound (S10), and cleaning the substrate with a cleaning solution whose pH has been adjusted to an acidity of 2 to 6.3 inclusive, and to which an oxidizing agent has been added (S20).
    Type: Application
    Filed: June 21, 2006
    Publication date: January 18, 2007
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takayuki Nishiura, Tomoki Uemura
  • Publication number: 20060003134
    Abstract: An AlxGayIn1-x-yN substrate in which particles having a grain size of at least 0.2 ?m on a surface of the AlxGayIn1-x-yN substrate are at most 20 in number when a diameter of the AlxGayIn1-x-yN substrate is two inches, and a cleaning method with which the AlxGayIn1-x-yN substrate can be obtained are provided. Further, an AlxGayIn1-x-yN substrate in which, in a photoelectron spectrum of a surface of the AlxGayIn1-x-yN substrate by X-ray photoelectron spectroscopy with a detection angle of 10°, a ratio between a peak area of C1s electrons and a peak area of N1s electrons (C1s electron peak area/N1s electron peak area) is at most 3, and a cleaning method with which the AlxGayIn1-x-yN substrate can be obtained are provided.
    Type: Application
    Filed: June 9, 2005
    Publication date: January 5, 2006
    Inventors: Tomoki Uemura, Keiji Ishibashi, Shinsuke Fujiwara, Hideaki Nakahata
  • Patent number: 6805808
    Abstract: A method for separating chips from a diamond wafer comprising a substrate, a chemically vapor-deposited diamond layer, and microelectronic elements, with the microelectronic elements protected from thermal damage and degradation caused by the thermally decomposed cuttings produced during the processing steps. (1) Front-side grooves 6 are formed on the chemically vapor-deposited diamond layer 2 by laser processing using a laser such as a YAG, CO2, or excimer laser each having a large output so that the grooves 6 can have a depth 1/100 to 1.5 times the thickness of the diamond layer. (2) The thermally decomposed cuttings produced during the laser processing are removed by using a plasma. (3) Back-side grooves 9 are formed on the substrate 1 by dicing such that the back-side grooves 9 are in alignment with the front-side grooves 6. (4) The diamond wafer 4 is divided into individual chips 10 by applying mechanical stresses.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: October 19, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Satoshi Fujii, Noboru Gotou, Tomoki Uemura, Toshiaki Saka, Katsuhiro Itakura
  • Patent number: 6717009
    Abstract: A high-purity naphthalenedicarboxylic acid is produced by a method including Steps [1] and [2]: In Step [I], a raw mixture of crude terephthalic acid and crude naphthalenedicarboxylic acid is dissolved into high-temperature high-pressure water to form a dibasic acid solution wherein the crude naphthalenedicarboxylic acid content is 0.1 to 10 mass percent of the crude terephthalic acid content, the dibasic acid solution is brought into contact with hydrogen in the presence of a catalyst. In Step [II], the resultant in the dibasic acid solution is crystallized by multiple stages while the temperature and the pressure are reduced for each stage, and acid mixtures containing enriched naphthalenedicarboxylic acid or enriched terephthalic acid are obtained by solid-liquid separation.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: April 6, 2004
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Masahiro Motoyuki, Tomoki Uemura, Koji Yamamoto
  • Patent number: 6661152
    Abstract: A diamond film is deposited in the thickness of 20 &mgr;m on a silicon wafer 0.8 mm thick by filament CVD. Here the hydrogen content of the diamond film is adjusted in the range of not less than 1% nor more than 5% in atomic percent. By mechanical polishing with a grinding wheel including diamond abrasives, the diamond film is smoothed so that the arithmetic mean roughness (Ra) of the surface thereof becomes not more than 20 nm.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: December 9, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Takahiro Imai, Tomoki Uemura, Daichi Kawaguchi, Hideaki Nakahata, Satoshi Fujii
  • Publication number: 20030137217
    Abstract: A diamond film is deposited in the thickness of 20 &mgr;m on a silicon wafer 0.8 mm thick by filament CVD Here the hydrogen content of the diamond film is adjusted in the range of not less than 1% nor more than 5% in atomic percent. By mechanical polishing with a grinding wheel including diamond abrasives, the diamond film is smoothed so that the arithmetic mean roughness (Ra) of the surface thereof becomes not more than 20 nm.
    Type: Application
    Filed: October 4, 2002
    Publication date: July 24, 2003
    Inventors: Keiji Ishibashi, Takahiro Imai, Tomoki Uemura, Daichi Kawaguchi, Hideaki Nakahata, Satoshi Fujii
  • Publication number: 20030127428
    Abstract: A method for separating chips from a diamond wafer comprising a substrate, a chemically vapor-deposited diamond layer, and microelectronic elements, with the microelectronic elements protected from thermal damage and degradation caused by the thermally decomposed cuttings produced during the processing steps. (1) Front-side grooves 6 are formed on the chemically vapor-deposited diamond layer 2 by laser processing using a laser such as a YAG, CO2, or excimer laser each having a large output so that the grooves 6 can have a depth 1/100 to 1.5 times the thickness of the diamond layer. (2) The thermally decomposed cuttings produced during the laser processing are removed by using a plasma. (3) Back-side grooves 9 are formed on the substrate 1 by dicing such that the back-side grooves 9 are in alignment with the front-side grooves 6. (4) The diamond wafer 4 is divided into individual chips 10 by applying mechanical stresses.
    Type: Application
    Filed: May 13, 2002
    Publication date: July 10, 2003
    Inventors: Satoshi Fujii, Noboru Gotou, Tomoki Uemura, Toshiaki Saka, Katsuhiro Itakura
  • Publication number: 20030078452
    Abstract: A high-purity naphthalenedicarboxylic acid is produced by a method including Steps [1] and [2]: In Step [I], a raw mixture of crude terephthalic acid and crude naphthalenedicarboxylic acid is dissolved into high-temperature high-pressure water to form a dibasic acid solution wherein the crude naphthalenedicarboxylic acid content is 0.1 to 10 mass percent of the crude terephthalic acid content, the dibasic acid solution is brought into contact with hydrogen in the presence of a catalyst. In Step [II], the resultant in the dibasic acid solution is crystallized by multiple stages while the temperature and the pressure are reduced for each stage, and acid mixtures containing enriched naphthalenedicarboxylic acid or enriched terephthalic acid are obtained by solid-liquid separation.
    Type: Application
    Filed: October 7, 2002
    Publication date: April 24, 2003
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Masahiro Motoyuki, Tomoki Uemura, Koji Yamamoto
  • Patent number: 6525235
    Abstract: The present invention provides a method for manufacturing a highly pure 2,6-dimethylnaphthalene having a purity of 99% or more even when a mixture of dimethylnaphthalene isomers containing 5 wt % or more of 2,7-dimethylnaphthalate is used as a feedstock. The method for manufacturing 2,6-dimethylnaphthalene comprises a step of performing crystallization and solid-liquid separation of a liquid primarily containing dimethylnaphthalene isomers so that the liquid is separated into a cake containing the dimethylnaphthalene isomers and a mother liquor, and a step of performing separation/purification of the cake. In the method described above, the crystallization and the solid-liquid separation are performed under the condition in which the ratio of the content of 2,6-dimethylnaphthalene in the mother liquor to that of 2,7-dimethylnaphthalene therein is not less than 1 so that the content of 2,6-dimethylnaphthalene in the cake is 60% or more and that the content of 2,7-dimethylnaphthalene therein is 6.5% or less.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: February 25, 2003
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shingo Yoshida, Masahiro Motoyuki, Tomoki Uemura, Koji Yamamoto
  • Patent number: 6448688
    Abstract: The invention offers a hard carbon film and a SAW substrate that are easy to fabricate or low in manufacturing cost while virtually maintaining the quality that affects the important properties of a device that comprises the hard carbon film or the SAW substrate. The hard carbon film comprises a composite film of graphite-like diamond and carbon clusters; the composite film has a continuous crystal structure.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: September 10, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Satoshi Fujii, Tomoki Uemura, Yuichiro Seki, Hideaki Nakahata, Shinichi Shikata
  • Patent number: 6416865
    Abstract: The invention offers a hard carbon film and a SAW substrate that are easy to fabricate or low in manufacturing cost while virtually maintaining the quality that affects the important properties of a device that comprises the hard carbon film or the SAW substrate. The hard carbon film comprises a composite film of graphite-like diamond and carbon clusters; the composite film has a continuous crystal structure.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: July 9, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Satoshi Fujii, Tomoki Uemura, Yuichiro Seki, Hideaki Nakahata, Shinichi Shikata
  • Publication number: 20020065447
    Abstract: The present invention provides a method for manufacturing a highly pure 2,6-dimethylnaphthalene having a purity of 99% or more even when a mixture of dimethylnaphthalene isomers containing 5 wt % or more of 2,7-dimethylnaphthalate is used as a feedstock. The method for manufacturing 2,6-dimethylnaphthalene comprises a step of performing crystallization and solid-liquid separation of a liquid primarily containing dimethylnaphthalene isomers so that the liquid is separated into a cake containing the dimethylnaphthalene isomers and a mother liquor, and a step of performing separation/purification of the cake. In the method described above, the crystallization and the solid-liquid separation are performed under the condition in which the ratio of the content of 2,6-dimethylnaphthalene in the mother liquor to that of 2,7-dimethylnaphthalene therein is not less than 1 so that the content of 2,6-dimethylnaphthalene in the cake is 60% or more and that the content of 2,7-dimethylnaphthalene therein is 6.5% or less.
    Type: Application
    Filed: October 1, 2001
    Publication date: May 30, 2002
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shingo Yoshida, Masahiro Motoyuki, Tomoki Uemura, Koji Yamamoto