Patents by Inventor Tomoko Atagi

Tomoko Atagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8067322
    Abstract: A glass composition for lamps includes the following by weight percent: SiO2: 60-75 wt %; CeO2+Ce2O3: 0.01-5.2 wt %; SnO+SnO2: 0.01-5.2 wt %; Al2O3: 0.5-6 wt %; B2O3: 0-5 wt %; Li2O+Na2O+K2O: 13-20 wt %; MgO: 0.5-5 wt %; CaO: 1-10 wt %; SrO: 0-10 wt %; BaO: 0-10 wt %; ZnO: 0-10 wt %; Fe2O3+FeO: 0-0.2 wt %; and TiO2: 0-1 wt %. The glass composition for lamps that contains no lead or antimony achieves high ultraviolet screening capacity, ensuring fewer occurrences of initial coloring and ultraviolet ray caused coloring of glass.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: November 29, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Ryousuke Sawa, Junko Abe, Tomoko Atagi, Masanobu Itou, Tomoko Akai, Masaru Yamashita
  • Publication number: 20100216624
    Abstract: A glass composition for lamps includes the following by weight percent: SiO2: 60-75 wt %; CeO2+Ce2O3: 0.01-5.2 wt %; SnO+SnO2: 0.01-5.2 wt %; Al2O3: 0.5-6 wt %; B2O3: 0-5 wt %; Li2O+Na2O+K2O: 13-20 wt %; MgO: 0.5-5 wt %; CaO: 1-10 wt %; SrO: 0-10 wt %; BaO: 0-10 wt %; ZnO: 0-10 wt %; Fe2O3+FeO: 0-0.2 wt %; and TiO2: 0-1 wt %. The glass composition for lamps that contains no lead or antimony achieves high ultraviolet screening capacity, ensuring fewer occurrences of initial coloring and ultraviolet ray caused coloring of glass.
    Type: Application
    Filed: August 7, 2006
    Publication date: August 26, 2010
    Inventors: Ryousuke Sawa, Junko Abe, Tomoko Atagi, Masanobu Itou, Tomoko Akai, Masaru Yamashita
  • Publication number: 20070254797
    Abstract: A glass composition for lamps includes: SiO2 (silicon dioxide) as a main component; Na2O (sodium oxide) in the range of 12 to 17 wt. %; MgO (magnesium oxide) in the range of 2.5 to 4 wt. %; and CaO (calcium oxide) in the rage of 5.3 to 7.3 wt. %, wherein the total content of MgO and CaO is in the range of 8 to 11 wt. %. Thereby, lamps can be manufactured at relatively low costs that exhibit superiority in fracture resistance, workability, erosion resistance with respect to the inner surface of a furnace, and suppressing the elution of alkali component.
    Type: Application
    Filed: May 30, 2005
    Publication date: November 1, 2007
    Inventors: Junko Abe, Tomoko Atagi, Masanobu Ito, Ryosuke Sawa, Yasuro Niguma, Hiroya Watanabe
  • Patent number: 6921730
    Abstract: A phosphor layer is composed of tri-band phosphor particles bound together by a binder. A material as the main component of the binder is a mixture of (1) a compound formed by calcium oxide, barium oxide, and boron oxide, and (2) calcium pyrophosphate. Dissolved in the main component material of the binder is a luminescent component that converts ultraviolet radiation of 254 nm to ultraviolet radiation of longer wavelengths or to visible light. Examples of such a luminescent component include an oxide of gadolinium (Gd), terbium (Tb), europium (Eu), neodymium (Nd), or dysprosium (Dy), each of which belongs to lanthanum series, and an oxide of thallium (Tl), tin (Sn), lead (Pb), or bismuth (Bi).
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: July 26, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomoko Atagi, Masanobu Ito
  • Patent number: 6906475
    Abstract: The present invention improves the luminous efficiency of lamps that emit light due to electric discharge, such as a fluorescent lamp and an HID lamp. The fluorescent lamp includes a glass tube used as a fluorescent tube made of a glass material containing an emissive element. When exposed to ultraviolet light (with the peak wavelength of 251 nm) emitted due to mercury excitation, the emissive element emits ultraviolet light having a longer wavelength than that. The HID lamp includes an envelop made of a glass material that contains an emissive element. When exposed to ultraviolet light emitted due to excitation of an emissive material enclosed in an arc tube, the emissive element emits ultraviolet light having a longer wavelength than that.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: June 14, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Tomoko Atagi
  • Patent number: 6812175
    Abstract: To suppress breakage of glass for an electric lamp in a process in which the glass that has already been formed is processed further, a glass composition for an electric lamp is provided. The glass composition contains, expressed in mol %, 70 to 85% of SiO2, 12 to 17% of R2O, and 2 to 8.5% of MO (where R represents at least one selected from Li, Na and K, and M represents at least one selected from Mg, Ca, Sr, Ba, Zn and Pb). In the glass composition, the respective contents of CaO, MgO, BaO and SrO satisfy the relationship, CaO+MgO>BaO+SrO. The glass composition has a brittleness index value B determined by the Vickers hardness test of 7,000 m−1/2. Preferably, the contents of SrO and BaO are 0 to 0.5% and 0.1 to 1%, respectively. More preferably, the respective contents of K2O and Na2O satisfy the relationship, K2O>Na2O.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: November 2, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akira Kawase, Tomoko Atagi, Masanobu Ito
  • Publication number: 20030181308
    Abstract: A phosphor layer 12 is composed of tri-band phosphor particles 12a bound together by a binder 12a. A material as the main component of the binder 12b is a mixture of (1) a compound formed by calcium oxide, barium oxide, and boron oxide, and (2) calcium pyrophosphate. Dissolved in the main component material of the binder 12a is a luminescent component that converts ultraviolet radiation of 254 nm to ultraviolet radiation of longer wavelengths or to visible light. Examples of such a luminescent component include an oxide of gadolinium (Gd), terbium (Tb), europium (Eu), neodymium (Nd), or dysprosium (Dy), each of which belongs to lanthanum series, and an oxide of thallium (Tl), tin (Sn), lead (Pb), or bismuth (Bi), each of which belongs to 3B, 4B, or 5B group.
    Type: Application
    Filed: March 13, 2003
    Publication date: September 25, 2003
    Inventors: Tomoko Atagi, Masanobu Ito
  • Publication number: 20030050176
    Abstract: To suppress breakage of glass for an electric lamp in a process in which the glass that has already been formed is processed further, a glass composition for an electric lamp is provided. The glass composition contains, expressed in mol %, 70 to 85% of SiO2, 12 to 17% of R2O, and 2 to 8.5% of MO (where R represents at least one selected from Li, Na and K, and M represents at least one selected from Mg, Ca, Sr, Ba, Zn and Pb). In the glass composition, the respective contents of CaO, MgO, BaO and SrO satisfy the relationship, CaO+MgO>BaO+SrO. The glass composition has a brittleness index value B determined by the Vickers hardness test of 7,000 m−½. Preferably, the contents of SrO and BaO are 0 to 0.5% and 0.1 to 1%, respectively. More preferably, the respective contents of K2O and Na2O satisfy the relationship, K2O>Na2O.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 13, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akira Kawase, Tomoko Atagi, Masanobu Ito
  • Publication number: 20020070682
    Abstract: The present invention improves the luminous efficiency of lamps that emit light due to electric discharge, such as a fluorescent lamp and an HID lamp. The fluorescent lamp includes a glass tube used as a fluorescent tube made of a glass material containing an emissive element. When exposed to ultraviolet light (with the peak wavelength of 251 nm) emitted due to mercury excitation, the emissive element emits ultraviolet light having a longer wavelength than that. The HID lamp includes an envelop made of a glass material that contains an emissive element. When exposed to ultraviolet light emitted due to excitation of an emissive material enclosed in an arc tube, the emissive element emits ultraviolet light having a longer wavelength than that.
    Type: Application
    Filed: July 2, 2001
    Publication date: June 13, 2002
    Inventor: Tomoko Atagi