Patents by Inventor Tomoko Eguchi

Tomoko Eguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230030881
    Abstract: A connection structure of conductive layers according to an embodiment includes: a first conductive member including a first conductive layer and a first substrate, the first conductive member extending in a first direction, the first conductive member curved in the first direction such that the first conductive layer side is convex; a second conductive member including a second conductive layer and a second substrate, the second conductive member extending in the first direction, the second conductive member curved in the first direction such that the second conductive layer side is convex; a third conductive member including a third conductive layer and a third substrate, the third conductive member extending in the first direction; a first connection layer between a the first conductive layer and the third conductive layer, the first connection layer having varying thickness; and a second connection layer between the second conductive layer and the third conductive layer, the second connection layer having
    Type: Application
    Filed: March 8, 2022
    Publication date: February 2, 2023
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasushi HATTORI, Tomoko EGUCHI, Masaya HAGIWARA, Keiko ALBESSARD
  • Publication number: 20230002663
    Abstract: A cold storage material, which has a large specific heat and a small magnetization in an extremely low temperature region and has satisfactory manufacturability, is provided, and a method for manufacturing the same is provided. Further, a refrigerator having high efficiency and excellent cooling performance is provided by filling this refrigerator with the above-described cold storage material. Moreover, a device incorporating a superconducting coil capable of reducing influence of magnetic noise derived from a cold storage material is provided. The cold storage material of embodiments is a granular body composed of an intermetallic compound in which the ThCr2Si2-type structure 11 occupies 80% by volume or more, and has a crystallite size of 70 nm or less.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Takahiro KAWAMOTO, Tomoko EGUCHI, Tomohiro YAMASHITA, Masaya HAGIWARA, Akiko SAITO, Daichi USUI
  • Publication number: 20230002662
    Abstract: A cold storage material, which has a large specific heat and a small magnetization in an extremely low temperature region and has satisfactory manufacturability, is provided, and a method for manufacturing the same is provided. Further, a refrigerator having high efficiency and excellent cooling performance is provided by filling this refrigerator with the above-described cold storage material. Moreover, a device incorporating a superconducting coil capable of reducing influence of magnetic noise derived from a cold storage material is provided. The cold storage material of embodiments is a granular body composed of an intermetallic compound in which the ThCr2Si2-type structure 11 occupies 80% by volume or more, and has a crystallite size of 70 nm or less.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Takahiro KAWAMOTO, Tomoko EGUCHI, Tomohiro YAMASHITA, Masaya HAGIWARA, Akiko SAITO, Daichi USUI
  • Publication number: 20220302609
    Abstract: A connection structure of a superconducting layer of an embodiment incudes a first superconducting member including a first superconducting layer, and extends in a first direction, a second superconducting member including a second superconducting layer facing the first superconducting layer, and extends in the first direction, the second superconducting member having a first region, a second region, and a third region which is separated in the second direction from the second region, and a connection layer that contains a rare earth element (RE), barium (Ba), copper (Cu), and oxygen (O), and connects the first superconducting layer and the second superconducting layer. The first superconducting layer is present in a third direction between the second region and the third region, the third direction being perpendicular to the first direction and perpendicular to the second direction.
    Type: Application
    Filed: September 3, 2021
    Publication date: September 22, 2022
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Yasushi HATTORI, Tomoko EGUCHI, Masaya HAGIWARA, Keiko ALBESSARD
  • Publication number: 20220243997
    Abstract: A two-stage heat regenerating cryogenic refrigerator may include: a vacuum vessel; a first and second cylinder in the vessel; the second cylinder coaxially connected to the first cylinder; a first regenerator in the first cylinder, the first regenerator accommodating heat regenerating material (HRM) 1; and a second regenerator in the second cylinder accommodating HRM 2, HRM 2 including plural HRM particles, each HRM particle including a heat regenerating substance having a maximum value of specific heat at a temperature of 20 K or less of 0.3 J/cm3·K or more and a metal element; each HRM particle including a first and second region, the second region being closer to each HRM particle's outer edge than the first, and the second region having a metal element higher concentration than the first, the first and second region containing the heat regenerating substance, and the heat regenerating substance contains an oxide or oxysulfide component.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 4, 2022
    Applicants: Kabushiki Kaisha Toshiba, TOSHIBA MATERIALS CO., LTD.
    Inventors: Tomohiro YAMASHITA, Takahiro KAWAMOTO, Tomoko EGUCHI, Takashi KUBOKI
  • Publication number: 20220199887
    Abstract: A connection structure for a superconducting layer according to an embodiment includes a first superconducting layer; a second superconducting layer; and a connection layer disposed between the first superconducting layer and the second superconducting layer, the connection layer including crystal grains containing a rare earth element (RE), barium (Ba), copper (Cu), and oxygen (O), the crystal grains having a grain size distribution including a bimodal distribution. The bimodal distribution includes a first distribution including a first peak and a second distribution including a second peak. A first grain size corresponding to the first peak is larger than a second grain size corresponding to the second peak. Among the crystal grains, crystal grains having a grain size corresponding to the first distribution include a crystal grain having a plate shape or a flat shape.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 23, 2022
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Masaya Hagiwara, Tomoko Eguchi, Keiko Albessard, Yasushi Hattori
  • Patent number: 11346613
    Abstract: A heat regenerating material particle of an embodiment contains a heat regenerating substance having a maximum value of specific heat at a temperature of 20 K or less is 0.3 J/cm3·K or more, and one metal element selected from the group consisting of calcium (Ca), magnesium (Mg), beryllium (Be), strontium (Sr), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), and cobalt (Co). The heat regenerating material particle includes a first region and a second region, the second region is closer to an outer edge of the heat regenerating material particle than the first region, and the second region has a higher concentration of the metal element than the first region.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: May 31, 2022
    Assignees: Kabushiki Kaisha Toshiba, TOSHIBA MATERIALS CO., LTD.
    Inventors: Tomohiro Yamashita, Takahiro Kawamoto, Tomoko Eguchi, Takashi Kuboki
  • Patent number: 11208584
    Abstract: A heat regenerating material particle according to an embodiment includes a plurality of heat regenerating substance particles having a maximum volume specific heat value of 0.3 J/cm3·K or more at a temperature of 20 K or lower, and a binder bonding the heat regenerating substance particles, the binder containing water insoluble resin. The heat regenerating material particle has a particle diameter of 500 ?m or less.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: December 28, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Yamashita, Takahiro Kawamoto, Tomoko Eguchi, Masaya Hagiwara, Akiko Saito, Takashi Kuboki
  • Publication number: 20210309904
    Abstract: A cold storage material, which has a large specific heat and a small magnetization in an extremely low temperature region and has satisfactory manufacturability, is provided, and a method for manufacturing the same is provided. Further, a refrigerator having high efficiency and excellent cooling performance is provided by filling this refrigerator with the above-described cold storage material. Moreover, a device incorporating a superconducting coil capable of reducing influence of magnetic noise derived from a cold storage material is provided. The cold storage material of embodiments is a granular body composed of an intermetallic compound in which the ThCr2Si2-type structure 11 occupies 80% by volume or more, and has a crystallite size of 70 nm or less.
    Type: Application
    Filed: March 24, 2021
    Publication date: October 7, 2021
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Takahiro KAWAMOTO, Tomoko EGUCHI, Tomohiro YAMASHITA, Masaya HAGIWARA, Akiko SAITO, Daichi USUI
  • Patent number: 10937576
    Abstract: The flaky magnetic metal particles of the embodiments include a plurality of flaky magnetic metal particles, each of the flaky magnetic metal particles including a first magnetic particle including a flat surface, at least one first element selected from the group consisting of Fe, Co and Ni, an average ratio between the maximum length and the minimum length in the flat surface being between 1 and 5 inclusive, an average thickness of the first magnetic particles being between 10 nm and 100 ?m inclusive, an average aspect ratio of the first magnetic particles being between 5 and 10000 inclusive; and a plurality of second magnetic particles disposed on the flat surface, an average number of the second magnetic particles being five or more, an average diameter of the second magnetic particles being between 10 nm and 1 ?m inclusive.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: March 2, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Tomoko Eguchi, Hiroaki Kinouchi
  • Publication number: 20200300556
    Abstract: A heat regenerating material particle of an embodiment contains a heat regenerating substance having a maximum value of specific heat at a temperature of 20 K or less is 0.3 J/cm3·K or more, and one metal element selected from the group consisting of calcium (Ca), magnesium (Mg), beryllium (Be), strontium (Sr), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), and cobalt (Co). The heat regenerating material particle includes a first region and a second region, the second region is closer to an outer edge of the heat regenerating material particle than the first region, and the second region has a higher concentration of the metal element than the first region.
    Type: Application
    Filed: August 30, 2019
    Publication date: September 24, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro YAMASHITA, Takahiro Kawamoto, Tomoko Eguchi, Takashi Kuboki
  • Publication number: 20200087558
    Abstract: A heat regenerating material particle according to an embodiment includes a plurality of heat regenerating substance particles having a maximum volume specific heat value of 0.3 J/cm3·K or more at a temperature of 20 K or lower, and a binder bonding the heat regenerating substance particles, the binder containing water insoluble resin. The heat regenerating material particle has a particle diameter of 500 ?m or less.
    Type: Application
    Filed: March 5, 2019
    Publication date: March 19, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Yamashita, Takahiro Kawamoto, Tomoko Eguchi, Masaya Hagiwara, Akiko Saito, Takashi Kuboki
  • Publication number: 20200035391
    Abstract: The flaky magnetic metal particles of the embodiments include a plurality of flaky magnetic metal particles, each of the flaky magnetic metal particles including a first magnetic particle including a flat surface, at least one first element selected from the group consisting of Fe, Co and Ni, an average ratio between the maximum length and the minimum length in the flat surface being between 1 and 5 inclusive, an average thickness of the first magnetic particles being between 10 nm and 100 ?m inclusive, an average aspect ratio of the first magnetic particles being between 5 and 10000 inclusive; and a plurality of second magnetic particles disposed on the flat surface, an average number of the second magnetic particles being five or more, an average diameter of the second magnetic particles being between 10 nm and 1 ?m inclusive.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 30, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Tomoko Eguchi, Hiroaki Kinouchi
  • Patent number: 10513760
    Abstract: Provided is a method for producing a magnetic material. The method includes preparing magnetic metal particles containing at least one magnetic metal selected from a first group consisting of Fe, Co and Ni, and at least one non-magnetic metal selected from a second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, Ba, Sr, Cr, Mo, Ag, Ga, Sc, V, Y, Nb, Pb, Cu, In, Sn and rare earth elements, pulverizing and reaggregating the magnetic metal particles, and thereby forming composite particles containing a magnetic metal phase and an interstitial phase, and heat-treating the composite particles at a temperature of from 50° C. to 800° C. The particle size distribution of the magnetic metal particles in the preparing magnetic metal particles has two or more peaks.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: December 24, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Koichi Harada, Tomoko Eguchi, Toshihide Takahashi, Seiichi Suenaga
  • Patent number: 10101061
    Abstract: According to an embodiment, a cryogenic regenerator material contains a silver oxide. A molar ratio of silver atoms to oxygen atoms contained in the cryogenic regenerator material: Ag/O is 1.0 or more and 4.0 or less. The cryogenic regenerator material contains at least one selected from AgO, Ag2O and Ag3O as the silver oxide.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: October 16, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoko Eguchi, Akiko Saito
  • Patent number: 10090088
    Abstract: The soft magnetic material of embodiments includes flattened magnetic metal particles including at least one magnetic metal selected from iron (Fe), cobalt (Co) and nickel (Ni), each of the flattened magnetic metal particles having a thickness of from 10 nm to 100 ?m, an aspect ratio of from 5 to 10,000, and a lattice strain of from 0.01% to 10%, and being oriented with magnetic anisotropy in one direction within aligned flattened surface; and an interposed phase existing between the flattened magnetic metal particles and including at least one of oxygen (O), carbon (C), nitrogen (N) and fluorine (F).
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: October 2, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Tomoko Eguchi, Kouichi Harada, Seiichi Suenaga, Hiroaki Kinouchi
  • Patent number: 10071421
    Abstract: The flaky magnetic metal particles of the embodiments include a plurality of flaky magnetic metal particles, each of the flaky magnetic metal particles including a first magnetic particle including a flat surface, at least one first element selected from the group consisting of Fe, Co and Ni, an average ratio between the maximum length and the minimum length in the flat surface being between 1 and 5 inclusive, an average thickness of the first magnetic particles being between 10 nm and 100 ?m inclusive, an average aspect ratio of the first magnetic particles being between 5 and 10000 inclusive; and a plurality of second magnetic particles disposed on the flat surface, an average number of the second magnetic particles being five or more, an average diameter of the second magnetic particles being between 10 nm and 1 ?m inclusive.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: September 11, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Tomoko Eguchi, Hiroaki Kinouchi
  • Patent number: 9997289
    Abstract: Provided is a magnetic material including a plurality of flat particles containing a magnetic metal, and a matrix phase disposed around the flat particles and having higher electrical resistance than the flat particles. In a cross-section of the magnetic material, the aspect ratio of the flat particles is 10 or higher. If the major axis of one of the flat particles is designated as L and the length of a straight line connecting two endpoints of the flat particle is designated as W, the proportion of the area surrounded by the outer peripheries of parts in which flat particles satisfying the relationship: W ?0.95×L are continuously laminated, is 10% or more of the cross-section.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: June 12, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Eguchi, Tomohiro Suetsuna, Koichi Harada, Toshihide Takahashi, Seiichi Suenaga
  • Publication number: 20180051916
    Abstract: According to an embodiment, a cryogenic regenerator material contains a silver oxide. A molar ratio of silver atoms to oxygen atoms contained in the cryogenic regenerator material: Ag/O is 1.0 or more and 4.0 or less. The cryogenic regenerator material contains at least one selected from AgO, Ag2O and Ag3O as the silver oxide.
    Type: Application
    Filed: February 27, 2017
    Publication date: February 22, 2018
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoko EGUCHI, Akiko Saito
  • Publication number: 20170209924
    Abstract: The flaky magnetic metal particles of the embodiments include a plurality of flaky magnetic metal particles, each of the flaky magnetic metal particles including a first magnetic particle including a flat surface, at least one first element selected from the group consisting of Fe, Co and Ni, an average ratio between the maximum length and the minimum length in the flat surface being between 1 and 5 inclusive, an average thickness of the first magnetic particles being between 10 nm and 100 ?m inclusive, an average aspect ratio of the first magnetic particles being between 5 and 10000 inclusive; and a plurality of second magnetic particles disposed on the flat surface, an average number of the second magnetic particles being five or more, an average diameter of the second magnetic particles being between 10 nm and 1 ?m inclusive.
    Type: Application
    Filed: September 8, 2016
    Publication date: July 27, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro SUETSUNA, Tomoko EGUCHI, Hiroaki KINOUCHI