Patents by Inventor Tomoko Katono

Tomoko Katono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5942592
    Abstract: A solvent-soluble siloxane polyimide comprising a copolymer obtained by reaction of a diamine compound mixture comprising a diaminopolysiloxane, an alicyclic diamine and an aromatic diamine with an aromatic tetracarboxylic acid anhydride, followed by polyimidization reaction of the resulting polyamic acid forms a heat-resistant adhesive by adding an epoxy resin, a diamine-based curing agent and an organic solvent thereto, The formed adhesives provides a distinguished curling resistance without any warp when the resulting siloxane polyimide soluble in ordinary organic solvents is used as a main component of the adhesive for bonding between a base material and a copper foil of a flexible printed substrate.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: August 24, 1999
    Assignee: Nippon Mektron, Limited
    Inventors: Dong Zhao, Hiroshi Sakuyama, Tomoko Katono, Lin-chiu Chiang, Jeng-Tain Lin
  • Patent number: 5859181
    Abstract: A solvent-soluble siloxane polyimide comprising a copolymer obtained by reaction of a diamine compound mixture comprising a diaminopolysiloxane and an alicyclic diamine with an aromatic tetracarboxylic acid anhydride, followed by polyimidization reaction of the resulting polyamic acid forms a heat-resistant adhesive by adding an epoxy resin, a diamine-based curing agent and an organic solvent thereto, The formed adhesives show a distinguished heat-resistant adhesiveness when the resulting siloxane polyimide soluble in ordinary organic solvents is used as a main component of the adhesive for bonding between a base material and a copper foil of a flexible printed substrate. By further addition of a fluorinated resin to the heat-resistant adhesive, the adhesiveness can be more improved.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: January 12, 1999
    Assignee: Nippon Mektron, Limited
    Inventors: Dong Zhao, Hiroshi Sakuyama, Tomoko Katono, Lin-chiu Chiang, Jeng-Tain Lin