Patents by Inventor Tomoko Otsu

Tomoko Otsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180161923
    Abstract: In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths of the laser light, a value of each wavelength, and incident conditions of the laser light are acquired (step S101), the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set (S104), and a light condensing control pattern to be provided for the laser light is set for each light condensing point (S107). Then, a modulation pattern to be presented in the spatial light modulator is designed in consideration of the light condensing control pattern (S108). Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state on the light condensing point, a propagation function to which a phase pattern opposite to the light condensing control pattern is added is used.
    Type: Application
    Filed: December 28, 2017
    Publication date: June 14, 2018
    Inventors: Naoya Matsumoto, Yuu Takiguchi, Taro Ando, Yoshiyuki Ohtake, Takashi Inoue, Tomoko Otsu, Haruyoshi Toyoda
  • Patent number: 9965867
    Abstract: A micro object control apparatus for controlling motion of a micro object within a medium includes a light source, an optical vortex generation unit, an objective lens, an imaging unit, an analysis unit, and a movement unit. The analysis unit acquires first motion information of the micro object based on the image data in which the micro object optically trapped with the optical vortex is imaged by setting the focal position of the optical vortex to a first position, acquires second motion information of the micro object based on the image data in which the micro object optically trapped with the optical vortex is imaged by setting the focal position of the optical vortex to a second position, and evaluates a state of an optical trap of the micro object with the optical vortex by comparing the first motion information and the second motion information.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: May 8, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoko Otsu, Taro Ando, Hiroyasu Itoh, Haruyoshi Toyoda, Yoshiyuki Ohtake, Yuu Takiguchi
  • Publication number: 20160247291
    Abstract: A micro object control apparatus for controlling motion of a micro object within a medium includes a light source, an optical vortex generation unit, an objective lens, an imaging unit, an analysis unit, and a movement unit. The analysis unit acquires first motion information of the micro object based on the image data in which the micro object optically trapped with the optical vortex is imaged by setting the focal position of the optical vortex to a first position, acquires second motion information of the micro object based on the image data in which the micro object optically trapped with the optical vortex is imaged by setting the focal position of the optical vortex to a second position, and evaluates a state of an optical trap of the micro object with the optical vortex by comparing the first motion information and the second motion information.
    Type: Application
    Filed: October 2, 2014
    Publication date: August 25, 2016
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoko OTSU, Taro ANDO, Hiroyasu ITOH, Haruyoshi TOYODA, Yoshiyuki OHTAKE, Yuu TAKIGUCHI
  • Patent number: 9250458
    Abstract: A spatial light modulation device includes a liquid crystal layer modulating a phase of incident light according to a level of an applied electric field, a temperature sensor generating a temperature signal corresponding to a temperature of the liquid crystal layer, a plurality of pixel electrodes provided for each of a plurality of pixels and applying a voltage to the liquid crystal layer, and a driving device providing a voltage to the plurality of pixel electrodes. The driving device has a nonvolatile storage element storing in advance a coefficient ? included in a function expressing a correlation between a temperature change amount in the liquid crystal layer and a variation in phase modulation amount in the liquid crystal layer, and performs a calculation for correcting a level of voltage by use of a temperature indicated by the temperature signal and the coefficient ?.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 2, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoko Otsu, Naoya Matsumoto, Yuu Takiguchi
  • Patent number: 9250459
    Abstract: A spatial light modulation device includes a liquid crystal layer modulating a phase of incident light according to a level of an applied electric field, a temperature sensor generating a temperature signal corresponding to a temperature of the liquid crystal layer, a plurality of pixel electrodes provided for each of a plurality of pixels and applying a voltage to the liquid crystal layer, and a driving device providing a voltage to the plurality of pixel electrodes. The driving device has a nonvolatile storage element storing in advance a coefficient ? included in a function expressing a correlation between a temperature change amount in the liquid crystal layer and a variation in phase modulation amount in the liquid crystal layer, and performs a calculation for correcting a level of voltage by use of a temperature indicated by the temperature signal and the coefficient ?.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 2, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoko Otsu, Naoya Matsumoto, Yuu Takiguchi
  • Patent number: 9223159
    Abstract: A spatial light modulation device includes a phase-modulation type spatial light modulator, a temperature sensor detecting a temperature of the spatial light modulator, and a control unit providing a drive signal to the spatial light modulator. The control unit has a storage unit. The storage unit stores N correction patterns created so as to correspond to N (N is an integer not less than 2) temperature values of the spatial light modulator in order to correct phase distortion of the spatial light modulator. The control unit selects one correction pattern according to a temperature value of the spatial light modulator, and generates the drive signal based on a phase pattern created by adding the one correction pattern to a desired phase pattern. Thereby, it becomes possible to suppress phase distortion according to a temperature change while suppressing a delay in operation.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 29, 2015
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yuu Takiguchi, Naoya Matsumoto, Tomoko Otsu
  • Publication number: 20140307299
    Abstract: In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths, a value of each wavelength, and incident conditions of the laser light are acquired, the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set, and a light condensing control pattern is set for each light condensing point. Then, a modulation pattern presented in the spatial light modulator is designed in consideration of the light condensing control pattern. Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state, a propagation function to which a phase pattern opposite to the light condensing control pattern is added is used.
    Type: Application
    Filed: October 23, 2012
    Publication date: October 16, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Naoya Matsumoto, Yuu Takiguchi, Taro Ando, Yoshiyuki Ohtake, Takashi Inoue, Tomoko Otsu, Haruyoshi Toyoda
  • Publication number: 20140293388
    Abstract: In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths, a value of each wavelength, and incident conditions of the laser light are acquired, the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set, and a distortion phase pattern provided in an optical system including the spatial light modulator to the laser light is derived. Then, a modulation pattern presented in the spatial light modulator is designed in consideration of the distortion phase pattern. Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state, a propagation function to which a distortion phase pattern is added is used.
    Type: Application
    Filed: October 23, 2012
    Publication date: October 2, 2014
    Inventors: Naoya Matsumoto, Yuu Takiguchi, Taro Ando, Yoshiyuki Ohtake, Takashi Inoue, Tomoko Otsu, Haruyoshi Toyoda
  • Publication number: 20140036180
    Abstract: A spatial light modulation device includes a phase-modulation type spatial light modulator, a temperature sensor detecting a temperature of the spatial light modulator, and a control unit providing a drive signal to the spatial light modulator. The control unit has a storage unit. The storage unit stores N correction patterns created so as to correspond to N (N is an integer not less than 2) temperature values of the spatial light modulator in order to correct phase distortion of the spatial light modulator. The control unit selects one correction pattern according to a temperature value of the spatial light modulator, and generates the drive signal based on a phase pattern created by adding the one correction pattern to a desired phase pattern. Thereby, it becomes possible to suppress phase distortion according to a temperature change while suppressing a delay in operation.
    Type: Application
    Filed: February 13, 2012
    Publication date: February 6, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yuu Takiguchi, Naoya Matsumoto, Tomoko Otsu
  • Publication number: 20140036206
    Abstract: A spatial light modulation device includes a liquid crystal layer modulating a phase of incident light according to a level of an applied electric field, a temperature sensor generating a temperature signal corresponding to a temperature of the liquid crystal layer, a plurality of pixel electrodes provided for each of a plurality of pixels and applying a voltage to the liquid crystal layer, and a driving device providing a voltage to the plurality of pixel electrodes. The driving device has a nonvolatile storage element storing in advance a coefficient ? included in a function expressing a correlation between a temperature change amount in the liquid crystal layer and a variation in phase modulation amount in the liquid crystal layer, and performs a calculation for correcting a level of voltage by use of a temperature indicated by the temperature signal and the coefficient ?.
    Type: Application
    Filed: February 10, 2012
    Publication date: February 6, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoko Otsu, Naoya Matsumoto, Yuu Takiguchi
  • Publication number: 20140022474
    Abstract: A spatial light modulation device includes a liquid crystal layer modulating a phase of incident light according to a level of an applied electric field, a temperature sensor generating a temperature signal corresponding to a temperature of the liquid crystal layer, a plurality of pixel electrodes provided for each of a plurality of pixels and applying a voltage to the liquid crystal layer, and a driving device providing a voltage to the plurality of pixel electrodes. The driving device has a nonvolatile storage element storing in advance a coefficient ? included in a function expressing a correlation between a temperature change amount in the liquid crystal layer and a variation in phase modulation amount in the liquid crystal layer, and performs a calculation for correcting a level of voltage by use of a temperature indicated by the temperature signal and the coefficient ?.
    Type: Application
    Filed: February 10, 2012
    Publication date: January 23, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoko Otsu, Naoya Matsumoto, Yuu Takiguchi