Patents by Inventor Tomomi Meguro

Tomomi Meguro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10944017
    Abstract: A method for manufacturing a stacked photoelectric conversion device includes forming an intermediate transparent conductive layer on a light-receiving surface of a crystalline silicon-based photoelectric conversion unit including a crystalline silicon substrate, and forming a thin-film photoelectric conversion unit on the intermediate transparent conductive layer. The stacked photoelectric conversion device includes the crystalline silicon-based photoelectric conversion unit, the intermediate transparent conductive layer, and the thin-film photoelectric conversion unit. The light-receiving surface of the crystalline silicon-based photoelectric conversion unit has a textured surface including a plurality of projections and recesses. The textured surface has an average height of 0.5 ?m or more. The intermediate transparent conductive layer fills the recesses of the textured surface and covers the tops of the projections of the textured surface.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 9, 2021
    Assignee: KANEKA CORPORATION
    Inventors: Ryota Mishima, Masashi Hino, Tomomi Meguro
  • Patent number: 10672930
    Abstract: A tandem-type photoelectric conversion device includes, arranged in the following order from a light-incident side: a first photoelectric conversion unit; an anti-reflection layer; a transparent conductive layer; and a second photoelectric conversion unit. The first photoelectric conversion unit includes a light absorbing layer including a photosensitive material of perovskite-type crystal structure represented by general formula R1NH3M1X3 or HC(NH2)2M1X3, wherein R1 is an alkyl group, M1 is a divalent metal ion, and X is a halogen. The second photoelectric conversion unit includes a light absorbing layer having a bandgap narrower than a bandgap of the light absorbing layer in the first photoelectric conversion unit. The anti-reflection layer and the transparent conductive layer are in contact with each other, and a refractive index of the anti-reflection layer is lower than a refractive index of the transparent conductive layer.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: June 2, 2020
    Assignee: KANEKA CORPORATION
    Inventors: Ryota Mishima, Masashi Hino, Hisashi Uzu, Tomomi Meguro
  • Patent number: 10333016
    Abstract: A multi-junction photoelectric conversion device includes, in the following order from a light-receiving side: a first photoelectric conversion unit; an intermediate layer; and a second photoelectric conversion unit. The first photoelectric conversion unit includes: a first light absorbing layer comprising a perovskite-type crystal structure photosensitive material; a first charge transport layer on the light-receiving side of the first light absorbing layer; and a second charge transport layer on a rear side of the first light absorbing layer. The second charge transport layer is in contact with the intermediate layer. The second photoelectric conversion unit includes: a second light absorbing layer that is a crystalline silicon substrate; and a first conductive semiconductor layer that is in contact with the intermediate layer.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: June 25, 2019
    Assignee: KANEKA CORPORATION
    Inventors: Hisashi Uzu, Masashi Hino, Mitsuru Ichikawa, Ryota Mishima, Tomomi Meguro, Kenji Yamamoto
  • Publication number: 20190081189
    Abstract: A method for manufacturing a stacked photoelectric conversion device includes forming an intermediate transparent conductive layer on a light-receiving surface of a crystalline silicon-based photoelectric conversion unit including a crystalline silicon substrate, and forming a thin-film photoelectric conversion unit on the intermediate transparent conductive layer. The stacked photoelectric conversion device includes the crystalline silicon-based photoelectric conversion unit, the intermediate transparent conductive layer, and the thin-film photoelectric conversion unit. The light-receiving surface of the crystalline silicon-based photoelectric conversion unit has a textured surface including a plurality of projections and recesses. The textured surface has an average height of 0.5 ?m or more. The intermediate transparent conductive layer fills the recesses of the textured surface and covers the tops of the projections of the textured surface.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Applicant: KANEKA CORPORATION
    Inventors: Ryota Mishima, Masashi Hino, Tomomi Meguro
  • Patent number: 10177705
    Abstract: A composite solar cell comprises a spectroscopic element, a first photoelectric conversion element, and a second photoelectric conversion element. The first photoelectric conversion element is positioned in a first direction of the spectroscopic element and the second photoelectric conversion element is positioned in a second direction of the spectroscopic element. The first photoelectric conversion element is a perovskite-type photoelectric conversion element containing, in a light absorbing layer, a perovskite crystal structure material represented by a general formula R1NH3M1X3. A band gap of a light absorbing layer of the second photoelectric conversion element is narrower than the band gap of the light absorbing layer of the first photoelectric conversion element. The spectroscopic element preferentially outputs the short wavelength light of the incident light in the first direction and preferentially outputs the long wavelength light of the incident light in the second direction.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: January 8, 2019
    Assignee: KANEKA CORPORATION
    Inventors: Hisashi Uzu, Mitsuru Ichikawa, Masashi Hino, Tomomi Meguro, Kenji Yamamoto
  • Publication number: 20180226529
    Abstract: A multi-junction photoelectric conversion device includes, in the following order from a light-receiving side: a first photoelectric conversion unit; an intermediate layer; and a second photoelectric conversion unit. The first photoelectric conversion unit includes: a first light absorbing layer comprising a perovskite-type crystal structure photosensitive material; a first charge transport layer on the light-receiving side of the first light absorbing layer; and a second charge transport layer on a rear side of the first light absorbing layer. The second charge transport layer is in contact with the intermediate layer. The second photoelectric conversion unit includes: a second light absorbing layer that is a crystalline silicon substrate; and a first conductive semiconductor layer that is in contact with the intermediate layer.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Applicant: Kaneka Corporation
    Inventors: Hisashi Uzu, Masashi Hino, Mitsuru Ichikawa, Ryota Mishima, Tomomi Meguro, Kenji Yamamoto
  • Patent number: 9893228
    Abstract: A solar cell includes a metal layer and a chalcopyrite compound semiconductor layer in this order on a polyimide film. A manufacturing method according to the present invention includes the following steps in the order: cast applying a polyimide precursor solution onto a support base containing an alkali metal; imidizing the polyimide precursor by heating to form a stacked body including a polyimide film on the support base; forming a metal layer on the polyimide film of the stacked body; and forming a chalcopyrite compound semiconductor layer on the metal layer.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: February 13, 2018
    Assignee: KANEKA CORPORATION
    Inventors: Masashi Hino, Mitsuru Ichikawa, Tomomi Meguro
  • Publication number: 20180019360
    Abstract: A tandem-type photoelectric conversion device includes, arranged in the following order from a light-incident side: a first photoelectric conversion unit; an anti-reflection layer; a transparent conductive layer; and a second photoelectric conversion unit. The first photoelectric conversion unit includes a light absorbing layer including a photosensitive material of perovskite-type crystal structure represented by general formula R1NH3M1X3 or HC(NH2)2M1X3, wherein R1 is an alkyl group, M1 is a divalent metal ion, and X is a halogen. The second photoelectric conversion unit includes a light absorbing layer having a bandgap narrower than a bandgap of the light absorbing layer in the first photoelectric conversion unit. The anti-reflection layer and the transparent conductive layer are in contact with each other, and a refractive index of the anti-reflection layer is lower than a refractive index of the transparent conductive layer.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Applicant: Kaneka Corporation
    Inventors: Ryota Mishima, Masashi Hino, Hisashi Uzu, Tomomi Meguro
  • Publication number: 20180019361
    Abstract: A photoelectric conversion device includes, arranged in the following order from a light-receiving side: a transparent electroconductive layer; a first photoelectric conversion unit that is a perovskite-type photoelectric conversion unit; and a second photoelectric conversion unit. The first photoelectric conversion unit includes, arranged in the following order from the light-receiving side: a hole transporting layer; a light absorbing layer including a photosensitive material of perovskite-type crystal structure represented by general formula RNH3MX3 or HC(NH2)2MX3; and an electron transporting layer. The second photoelectric conversion unit includes a light absorbing layer having a bandgap narrower than a bandgap of the light absorbing layer in the first photoelectric conversion unit. A product of a resistivity ? and a thickness t of the hole transporting layer satisfies ?t?0.1 ?Q·m2. The transparent electroconductive layer is in contact with the hole transporting layer.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Applicant: Kaneka Corporation
    Inventors: Ryota Mishima, Masashi Hino, Hisashi Uzu, Tomomi Meguro
  • Patent number: 9865762
    Abstract: The thin-film photoelectric conversion device of the present invention includes: a transparent electroconductive film having zinc oxide as a main component; a contact layer; a photoelectric conversion unit having a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer in this order; and a back electrode layer, in this order, on one main surface of a substrate. The contact layer has an intrinsic crystalline semiconductor layer and a p-type crystalline semiconductor layer in this order from the substrate side, and the intrinsic crystalline semiconductor layer of the contact layer and the transparent electroconductive film are in contact with each other. The p-type crystalline semiconductor layer of the contact layer is preferably a layer having as a main component a silicon alloy selected from the group consisting of a silicon oxide; a silicon nitride; and silicon carbide.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 9, 2018
    Assignee: KANEKA CORPORATION
    Inventors: Tomomi Meguro, Kenji Yamamoto
  • Publication number: 20170155358
    Abstract: A composite solar cell comprises a spectroscopic element, a first photoelectric conversion element, and a second photoelectric conversion element. The first photoelectric conversion element is positioned in a first direction of the spectroscopic element and the second photoelectric conversion element is positioned in a second direction of the spectroscopic element. The first photoelectric conversion element is a perovskite-type photoelectric conversion element containing, in a light absorbing layer, a perovskite crystal structure material represented by a general formula R1NH3M1X3. A band gap of a light absorbing layer of the second photoelectric conversion element is narrower than the band gap of the light absorbing layer of the first photoelectric conversion element. The spectroscopic element preferentially outputs the short wavelength light of the incident light in the first direction and preferentially outputs the long wavelength light of the incident light in the second direction.
    Type: Application
    Filed: July 10, 2015
    Publication date: June 1, 2017
    Inventors: Hisashi Uzu, Mitsuru Ichikawa, Masashi Hino, Tomomi Meguro, Kenji Yamamoto
  • Publication number: 20170110620
    Abstract: A solar cell includes a metal layer and a chalcopyrite compound semiconductor layer in this order on a polyimide film. A manufacturing method according to the present invention includes the following steps in the order: cast applying a polyimide precursor solution onto a support base containing an alkali metal; imidizing the polyimide precursor by heating to form a stacked body including a polyimide film on the support base; forming a metal layer on the polyimide film of the stacked body; and forming a chalcopyrite compound semiconductor layer on the metal layer.
    Type: Application
    Filed: March 25, 2015
    Publication date: April 20, 2017
    Inventors: Masashi Hino, Mitsuru Ichikawa, Tomomi Meguro
  • Publication number: 20150221802
    Abstract: The thin-film photoelectric conversion device of the present invention includes: a transparent electroconductive film having zinc oxide as a main component; a contact layer; a photoelectric conversion unit having a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer in this order; and a back electrode layer, in this order, on one main surface of a substrate. The contact layer has an intrinsic crystalline semiconductor layer and a p-type crystalline semiconductor layer in this order from the substrate side, and the intrinsic crystalline semiconductor layer of the contact layer and the transparent electroconductive film are in contact with each other. The p-type crystalline semiconductor layer of the contact layer is preferably a layer having as a main component a silicon alloy selected from the group consisting of a silicon oxide; a silicon nitride; and silicon carbide.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 6, 2015
    Applicant: KANEKA CORPORATION
    Inventors: Tomomi Meguro, Kenji Yamamoto
  • Patent number: 9059422
    Abstract: Disclosed is a substrate with a transparent conductive film, wherein an underlying layer and a transparent conductive film are arranged in this order on a transparent insulating substrate. The transparent conductive film-side surface of the underlying layer is provided with a pyramid-shaped or inverse pyramid-shaped irregular structure, and the transparent conductive film comprises a first transparent electrode layer which is formed on the underlying layer and a second transparent electrode layer which forms the outermost surface of the transparent conductive film. By forming a zinc oxide layer that serves as the second transparent electrode layer by a reduced pressure CVD method, a substrate with a transparent conductive film that is provided with an irregular structure smaller than that of the underlying layer can be obtained. The substrate with a transparent conductive film can improve the conversion efficiency of a photoelectric conversion device through an increased light trapping effect.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: June 16, 2015
    Assignee: KANEKA CORPORATION
    Inventors: Tomomi Meguro, Kenji Yamamoto
  • Publication number: 20140124030
    Abstract: The invention relates to a thin film solar cell including a transparent substrate, a transparent electrode layer, at least one photoelectric conversion unit, and a back electrode layer in this order from the light incident side. The transparent substrate includes a transparent base, a transparent undercoat layer having fine particles and a binder, and an insulating irregularity layer in this order from the light incident side. Consequently, light reflection by the transparent substrate is suppressed and optical path length of the incident light is increased due to light diffusion, so that improved optical confinement effect can be achieved.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 8, 2014
    Applicant: KANEKA CORPORATION
    Inventors: Osamu Inaki, Tomomi Meguro, Gensuke Koizumi, Naoaki Nakanishi, Kenji Yamamoto
  • Patent number: 8410355
    Abstract: This invention intends to develop a technique for forming an interlayer with excellent optical characteristics and to provide a photoelectric conversion device having high conversion efficiency. To realize this purpose, a series connection through an intermediate layer is formed in the thin-film photoelectric conversion device of the invention, and the interlayer is a transparent oxide layer in its front surface and n pairs of layers stacked therebehind (n is an integer of 1 or more), wherein each of the pair of layers is a carbon layer and a transparent oxide layer stacked in this order. Film thicknesses of each layer are optimized to improve wavelength selectivity and stress resistance while keeping the series resistance.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: April 2, 2013
    Assignee: Kaneka Corporation
    Inventors: Tomomi Meguro, Mitsuru Ichikawa, Fumiyasu Sezaki, Kunta Yoshikawa, Takashi Kuchiyama, Kenji Yamamoto
  • Publication number: 20110290322
    Abstract: Disclosed is a substrate with a transparent conductive film, wherein an underlying layer and a transparent conductive film are arranged in this order on a transparent insulating substrate. The transparent conductive film-side surface of the underlying layer is provided with a pyramid-shaped or inverse pyramid-shaped irregular structures, and the transparent conductive film comprises a first transparent electrode layer which is formed on the underlying layer and a second transparent electrode layer which forms the outermost surface of the transparent conductive film. By forming a zinc oxide layer that serves as the second transparent electrode layer by a reduced pressure CVD method, a substrate with a transparent conductive film that is provided with an irregular structure smaller than that of the underlying layer can be obtained. The substrate with a transparent conductive film can improve the conversion efficiency of a photoelectric conversion device through an increased light trapping effect.
    Type: Application
    Filed: January 29, 2010
    Publication date: December 1, 2011
    Applicant: KANEKA CORPORATION
    Inventors: Tomomi Meguro, Kenji Yamamoto
  • Publication number: 20100243058
    Abstract: This invention intends to develop a technique for forming an interlayer with excellent optical characteristics and to provide a photoelectric conversion device having high conversion efficiency. To realize this purpose, a series connection through an intermediate layer is formed in the thin-film photoelectric conversion device of the invention, and the interlayer is a transparent oxide layer in its front surface and n pairs of layers stacked therebehind (n is an integer of 1 or more), wherein each of the pair of layers is a carbon layer and a transparent oxide layer stacked in this order. Film thicknesses of each layer are optimized to improve wavelength selectivity and stress resistance while keeping the series resistance.
    Type: Application
    Filed: October 30, 2008
    Publication date: September 30, 2010
    Applicant: KANEKA CORPORATION
    Inventors: Tomomi Meguro, Mitsuru Ichikawa, Fumiyasu Sezaki, Kunta Yoshikawa, Takashi Kuchiyama, Kenji Yamamoto
  • Publication number: 20080210300
    Abstract: This invention provides a method of producing a substrate for a thin film photoelectric conversion device, the substrate being able to make it possible to fabricate the thin film photoelectric conversion device free from lowering in its open-circuit voltage or its fill factor even when the substrate includes a transparent conductive film that is mainly composed of zinc oxide and has a relatively large haze ratio for causing a large optical confinement effect. The method of producing the substrate for the thin film photoelectric conversion device according to the present invention is characterized in that a transparent conductive film formed on a transparent insulator base, which is mainly composed of zinc oxide and having a haze ratio of at least 5%, is etched with an acid or alkali solution.
    Type: Application
    Filed: March 7, 2006
    Publication date: September 4, 2008
    Inventors: Tomomi Meguro, Kenji Yamamoto
  • Publication number: 20070157966
    Abstract: The present invention provides a method for making a transparent conductive film, which contains zinc oxide as a main component and which has high transmittance, low resistivity, and excellent surface morphology, highly uniformly and simply, using an inexpensive dilution gas, and also provides a method for making a tandem thin-film photoelectric converter including the method for making the transparent conductive film. A method for making a transparent conductive film according to the present invention includes introducing an organozinc compound, a dilution gas, and an oxidizing agent into a deposition chamber to form a transparent conductive film containing zinc oxide as a main component on a substrate disposed in the deposition chamber, wherein the dilution gas is hydrogen. Since hydrogen has high thermal conductivity and is inexpensive, it is possible to provide a transparent conductive film having excellent characteristics with low cost.
    Type: Application
    Filed: January 27, 2005
    Publication date: July 12, 2007
    Inventors: Tomomi Meguro, Susumu Fukuda, Kenji Yamamoto