Patents by Inventor Tomonori Shibayama

Tomonori Shibayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9914845
    Abstract: There is produced a fine silver particle dispersing solution which contains: fine silver particles (the content of silver in the fine silver particle dispersing solution is 30 to 90% by weight), which have an average primary particle diameter of 1 to 100 nm and which are coated with an amine having a carbon number of 8 to 12, such as octylamine, serving as an organic protective material; a polar solvent (5 to 70% by weight) having a boiling point of 150 to 300° C.; and an acrylic dispersing agent (1.5 to 5% by weight with respect to the fine silver particles), such as a dispersing agent of at least one of acrylic acid ester and methacrylic acid ester.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 13, 2018
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Takashi Hinotsu, Tomonori Shibayama, Hiromasa Miyoshi
  • Patent number: 9682426
    Abstract: An aliphatic amine having a carbon number of not less than 6, such as octylamine, hexylamine or oleylamine, serving as an organic protective material is added to water serving as a solvent so that the molar ratio of the aliphatic amine with respect to silver of a silver compound is in the range of 0.05 to 6, a reducing agent, such as hydrazine or NaBH4, being added thereto so that the molar ratio of the reducing agent with respect to silver of the silver compound is in the range of 1 to 6, and the silver compound, such as a silver salt or a silver oxide, being added thereto so that the concentration of silver ions in the aqueous reaction solution is in the range of 0.01 to 1.0 mol/L, and then, the silver compound is reduced at a temperature of 10 to 50° C. to produce fine silver particles having an average primary particle diameter of 10 to 200 nm. Thus, there is provided a method for producing fine silver particles, the method being capable of inexpensively producing fine silver particles in a short time.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: June 20, 2017
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Tomonori Shibayama, Takashi Hinotsu, Tatuya Kariyasu
  • Publication number: 20160297982
    Abstract: There is produced a fine silver particle dispersing solution which contains: fine silver particles (the content of silver in the fine silver particle dispersing solution is 30 to 90% by weight), which have an average primary particle diameter of 1 to 100 nm and which are coated with an amine having a carbon number of 8 to 12, such as octylamine, serving as an organic protective material; a polar solvent (5 to 70% by weight) having a boiling point of 150 to 300° C.; and an acrylic dispersing agent (1.5 to 5% by weight with respect to the fine silver particles), such as a dispersing agent of at least one of acrylic acid ester and methacrylic acid ester.
    Type: Application
    Filed: December 4, 2014
    Publication date: October 13, 2016
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Takashi Hinotsu, Tomonori Shibayama, Hiromasa Miyoshi
  • Publication number: 20150266097
    Abstract: An aliphatic amine having a carbon number of not less than 6, such as octylamine, hexylamine or oleylamine, serving as an organic protective material is added to water serving as a solvent so that the molar ratio of the aliphatic amine with respect to silver of a silver compound is in the range of 0.05 to 6, a reducing agent, such as hydrazine or NaBH4, being added thereto so that the molar ratio of the reducing agent with respect to silver of the silver compound is in the range of 1 to 6, and the silver compound, such as a silver salt or a silver oxide, being added thereto so that the concentration of silver ions in the aqueous reaction solution is in the range of 0.01 to 1.0 mol/L, and then, the silver compound is reduced at a temperature of 10 to 50° C. to produce fine silver particles having an average primary particle diameter of 10 to 200 nm. Thus, there is provided a method for producing fine silver particles, the method being capable of inexpensively producing fine silver particles in a short time.
    Type: Application
    Filed: September 20, 2013
    Publication date: September 24, 2015
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Tomonori Shibayama, Takashi Hinotsu, Tatuya Kariyasu
  • Patent number: 6816333
    Abstract: An electronic apparatus includes a base, a main body and a lock mechanism. A main body is rotatably supported on the base and having a display unit. A lock mechanism prevents the main body from rotating with respect to the base. The main body includes the display unit and a magnetic disk drive. The magnetic disk drive includes a magnetic head and a safety unit. The magnetic head accesses a recording medium. A safety unit moves the magnetic head to a save position where the magnetic head is safe in the magnetic disk drive when the lock mechanism is unlocked. The safety unit move the magnetic head to start a seeking operation over the recording medium when the lock mechanism is locked.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: November 9, 2004
    Assignee: NEC Corporation
    Inventor: Tomonori Shibayama
  • Publication number: 20020063988
    Abstract: An electronic apparatus includes a base, a main body and a lock mechanism. A main body is rotatably supported on the base and having a display unit. A lock mechanism prevents the main body from rotating with respect to the base. The main body includes the display unit and a magnetic disk drive. The magnetic disk drive includes a magnetic head and a safety unit. The magnetic head accesses a recording medium. A safety unit moves the magnetic head to a save position where the magnetic head is safe in the magnetic disk drive when the lock mechanism is unlocked. The safety unit move the magnetic head to start a seeking operation over the recording medium when the lock mechanism is locked.
    Type: Application
    Filed: November 26, 2001
    Publication date: May 30, 2002
    Inventor: Tomonori Shibayama