Patents by Inventor Tomotada Maruo

Tomotada Maruo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170022580
    Abstract: Provided is a spring steel that contains 0.15-0.40% carbon, 1-3.5% silicon, 0.20-2.0% manganese, 0.05-1.20% chromium, at most 0.030% phosphorus, at most 0.02% sulfur, and at least one of the following: 0.005-0.10% titanium, 0.005-0.05% niobium, and at most 0.25% vanadium. The remainder of said spring steel comprises iron and unavoidable impurities. The carbon equivalent (Ceq1) of the provided spring steel, as calculated by formula (1), is at most 0.55. Ceq1=[C]+0.108×[Si]?0.067×[Mn]+0.024×[Cr]?0.05×[Ni]+0.074×[V]??(1) (In the formula (1), each symbol in brackets represents the content (mass %) of the corresponding element.
    Type: Application
    Filed: October 5, 2016
    Publication date: January 26, 2017
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Sayaka NAGAMATSU, Tomotada MARUO, Nao YOSHIHARA
  • Patent number: 8470105
    Abstract: A high carbon steel wire material which is made of high carbon steel as a raw material for wire products such as steel cords, bead wires, PC steel wires and spring steel, allows for these wire products to be manufactured efficiently at a high wire drawing rate and has excellent wire drawability and a manufacturing process thereof. This high carbon steel wire material is made of a steel material having specific contents of C, Si, Mn, P, S, N, Al and O, and the Bcc-Fe crystal grains of its metal structure have an average crystal grain diameter (Dave) of 20 ?m or less and a maximum crystal grain diameter (Dmax) of 120 ?m or less, preferably an area ratio of crystal grains having a diameter of 80 ?m or more of 40% or less, an average sub grain diameter (dave) of 10 ?m or less, a maximum sub grain diameter (dmax) of 50 ?m or less and a (Dave/dave) ratio of the average crystal grain diameter (Dave) to the average sub grain diameter (dave) of 4.5 or less.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: June 25, 2013
    Assignee: Kobe Steele, Ltd.
    Inventors: Takuya Kochi, Shogo Murakami, Hiroshi Yaguchi, Takeshi Kuroda, Hidenori Sakai, Tomotada Maruo, Takaaki Minamida
  • Patent number: 8382916
    Abstract: The present invention aims at providing a method for production of a steel product which surely retains scale during cooling, storage, and transportation and permits scale to scale off easily at the time of mechanical descaling and pickling that precede the secondary fabrication. The steel product is produced by heating and hot rolling a steel billet and spraying the hot-rolled steel product with steam and/or water mist having a particle diameter no larger than 100 ?m, for surface oxidation.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: February 26, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Takeshi Kuroda, Hidenori Sakai, Mikako Takeda, Takuya Kochi, Takashi Onishi, Tomotada Maruo, Takaaki Minamida
  • Publication number: 20120285585
    Abstract: A spring steel contains 0.15-0.40% carbon, 1-3.5% silicon, 0.20-2.0% manganese, 0.05-1.20% chromium, at most 0.030% phosphorus, at most 0.02% sulfur, and at least one of the following: 0.005-0.10% titanium, 0.005-0.05% niobium, and at most 0.25% vanadium. The remainder of said spring steel includes iron and unavoidable impurities. The carbon equivalent (Ceq1) of the provided spring steel, as calculated by formula (1), is at most 0.55. (1) Ceq1=[C]+0.108×[Si]?0.067×[Mn]+0.024×[Cr]?0.05×[Ni]+0.074×[V]. In the formula (1), each symbol in brackets represents the content (mass %) of the corresponding element.
    Type: Application
    Filed: December 21, 2010
    Publication date: November 15, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Sayaka Nagamatsu, Tomotada Maruo, Nao Yoshihara
  • Patent number: 8216394
    Abstract: The present invention aims at providing a method for production of a steel product which surely retains scale during cooling, storage, and transportation and permits scale to scale off easily at the time of mechanical descaling and pickling that precede the secondary fabrication. The steel product is produced by heating and hot rolling a steel billet and spraying the hot-rolled steel product with steam and/or water mist having a particle diameter no larger than 100 ?m, for surface oxidation.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: July 10, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Takeshi Kuroda, Hidenori Sakai, Mikako Takeda, Takuya Kochi, Takashi Onishi, Tomotada Maruo, Takaaki Minamida
  • Patent number: 8092916
    Abstract: An FeO layer including fine crystal grains having random orientation is formed as inner layer scale on the surface of the steel wire rod containing C: 0.05-1.2 mass % (hereinafter referred to as “%”), Si: 0.01-0.50%, Mn: 0.1-1.5%, P: 0.02% or below, S: 0.02% or below, N: 0.005% or below, an Fe2SiO4 layer with the thickness: 0.01-1.0 ?m is formed in the boundary face between the FeO layer of the inner layer scale and steel, and the thickness of the inner layer scale is 1-40% of the total scale thickness. In another aspect, the maximum grain size of the crystal grain of the inner layer scale is 5.0 ?m or below and the average grain size is 2.0 ?m or below.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: January 10, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Mikako Takeda, Shohei Nakakubo, Takashi Onishi, Masumi Nishimura, Hidenori Sakai, Tomotada Maruo
  • Publication number: 20100236667
    Abstract: The present invention aims at providing a method for production of a steel product which surely retains scale during cooling, storage, and transportation and permits scale to scale off easily at the time of mechanical descaling and pickling that precede the secondary fabrication. The steel product is produced by heating and hot rolling a steel billet and spraying the hot-rolled steel product with steam and/or water mist having a particle diameter no larger than 100 ?m, for surface oxidation.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 23, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takeshi Kuroda, Hidenori Sakai, Mikako Takeda, Takuya Kochi, Takashi Onishi, Tomotada Maruo, Takaaki Minamida
  • Publication number: 20090269578
    Abstract: An FeO layer including fine crystal grains having random orientation is formed as inner layer scale on the surface of the steel wire rod containing C: 0.05-1.2 mass % (hereinafter referred to as “%”), Si: 0.01-0.50%, Mn: 0.1-1.5%, P: 0.02% or below, S: 0.02% or below, N: 0.005% or below, an Fe2SiO4 layer with the thickness: 0.01-1.0 ?m is formed in the boundary face between the FeO layer of the inner layer scale and steel, and the thickness of the inner layer scale is 1-40% of the total scale thickness. In another aspect, the maximum grain size of the crystal grain of the inner layer scale is 5.0 ?m or below and the average grain size is 2.0 ?m or below.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 29, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Mikako TAKEDA, Shohei NAKAKUBO, Takashi ONISHI, Masumi NISHIMURA, Hidenori SAKAI, Tomotada MARUO
  • Publication number: 20090229710
    Abstract: The present invention aims at providing a method for production of a steel product which surely retains scale during cooling, storage, and transportation and permits scale to scale off easily at the time of mechanical descaling and pickling that precede the secondary fabrication. The steel product is produced by heating and hot rolling a steel billet and spraying the hot-rolled steel product with steam and/or water mist having a particle diameter no larger than 100 ?m, for surface oxidation.
    Type: Application
    Filed: August 14, 2006
    Publication date: September 17, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho ( Kobe Steel, Ltd.)
    Inventors: Takeshi Kuroda, Hidenori Sakai, Mikako Takeda, Takuya Kochi, Takashi Onishi, Tomotada Maruo, Takaaki Minamida
  • Publication number: 20090223610
    Abstract: A high carbon steel wire material which is made of high carbon steel as a raw material for wire products such as steel cords, bead wires, PC steel wires and spring steel, allows for these wire products to be manufactured efficiently at a high wire drawing rate and has excellent wire drawability and a manufacturing process thereof. This high carbon steel wire material is made of a steel material having specific contents of C, Si, Mn, P, S, N, Al and O, and the Bcc-Fe crystal grains of its metal structure have an average crystal grain diameter (Dave) of 20 ?m or less and a maximum crystal grain diameter (Dmax) of 120 ?m or less, preferably an area ratio of crystal grains having a diameter of 80 ?m or more of 40% or less, an average sub grain diameter (dave) of 10 ?m or less, a maximum sub grain diameter (dmax) of 50 ?m or less and a (Dave/dave) ratio of the average crystal grain diameter (Dave) to the average sub grain diameter (dave) of 4.5 or less.
    Type: Application
    Filed: May 15, 2009
    Publication date: September 10, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takuya KOCHI, Shogo MURAKAMI, Hiroshi YAGUCHI, Takeshi KURODA, Hidenori SAKAI, Tomotada MARUO, Takaaki MINAMIDA
  • Publication number: 20070277913
    Abstract: Disclosed are a wire rod and a method therefor. The wire rod is excellent in wire-drawing workability, insusceptible to wire break in spite of an increase in wire-drawing rate, and reduction of area, and capable of extending a die life by suppressing die wear. The wire rod is made of steel containing C: 0.6 to 1.1%, Si: 0.1 to 2.0%, Mn: 0.1 to 1%, P: not more than 0.20%, S: not more than 0.20%, N: not more than 0.006%, Al: not more than 0.03%, and O: not more than 0.003%, the balance including Fe, and unavoidable impurities. Further, the wire rod comprises a pearlite structure wherein an area ratio of a second-phase ferrite is not more than 11.0%, and a pearlite lamellar spacing is not less than 120 ?m.
    Type: Application
    Filed: May 29, 2007
    Publication date: December 6, 2007
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takuya Kochi, Takeshi Kuroda, Hidenori Sakai, Tomotada Maruo, Shogo Murakami, Hiroshi Yaguchi