Patents by Inventor Tomoteru Mizusaki

Tomoteru Mizusaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200299239
    Abstract: An aromatic nitro compound has a structure in which a nitro group and a halogen atom, in a separated state, are directly bonded as substituents to the ring structure of the same ring; a reaction composition is provided which, in a hydrogenation reaction of the nitro group of said aromatic nitro compound, allows selectively hydrogenating the nitro group, and sufficiently reducing the separation of the halogen atom from the ring; also provided is a reaction system that uses this reaction composition. This reaction composition includes a catalyst which, with the aforementioned aromatic nitro compound as reactant, is used in a hydrogenation reaction of at least one of the one or more nitro groups of said reactant. Further, the reaction composition includes a base and an organic solvent. The catalyst includes a carrier, and Fe oxide particles and Pt particles supported by the carrier.
    Type: Application
    Filed: February 15, 2017
    Publication date: September 24, 2020
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Hiroyasu Suzuka, Tomoteru Mizusaki, Yusuke Nakaya, Yoshiyuki Wada, Yukio Takagi
  • Publication number: 20200290967
    Abstract: An aromatic nitro compound has a structure in which a nitro group and a halogen atom, in a separated state, are directly bonded as substituents to the ring structure of the same ring; a reaction composition is provided which, in a hydrogenation reaction of the nitro group of said aromatic nitro compound, allows selectively hydrogenating the nitro group, and sufficiently reducing the separation of the halogen atom from the ring; also provided is a reaction system that uses this reaction composition. This reaction composition includes a solvent, and a catalyst which, with the aforementioned aromatic nitro compound as reactant, is used in a hydrogenation reaction of at least one of the one or more nitro groups of said reactant. The catalyst includes a carrier, and Fe oxide particles and Pt particles supported by the carrier.
    Type: Application
    Filed: February 15, 2017
    Publication date: September 17, 2020
    Applicants: N.E. CHEMCAT CORPORATION, N.E. CHEMCAT CORPORATION
    Inventors: Hiroyasu Suzuka, Tomoteru Mizusaki, Yusuke Nakaya, Yoshiyuki Wada
  • Publication number: 20200290024
    Abstract: Provided is a catalyst mixture which, in a nitro group hydrogenation reaction of an aromatic nitro compound having a structure in which nitro groups and halogen atoms are directly bonded as substituents to a ring skeleton of the same ring while separated from each other, is capable of selectively hydrogenating the nitro groups and sufficiently reducing the removal of the halogen atoms from the ring. This catalyst mixture includes a catalyst which is used in a hydrogenation reaction of at least one among one or more nitro groups present in a reactant, which is an aromatic nitro compound having a structure in which one or more nitro groups and one or more halogen atoms are directly bonded as substituents to a ring skeleton of the same ring while separated from each other. This catalyst mixture further includes a base.
    Type: Application
    Filed: February 15, 2017
    Publication date: September 17, 2020
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoteru Mizusaki, Hiroyasu Suzuka, Yusuke Nakaya, Yoshiyuki Wada, Yukio Takagi
  • Publication number: 20200188897
    Abstract: An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a ? bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the low frequency side compared to the TEP value of the ligand of formula (2-1).
    Type: Application
    Filed: December 6, 2017
    Publication date: June 18, 2020
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, N.E. CHEMCAT CORPORATION
    Inventors: Junchul Choi, Norihisa Fukaya, Shunya Onozawa, Kazuhiko Sato, Hiroyuki Yasuda, Tomoteru Mizusaki, Yukio Takagi
  • Publication number: 20190308182
    Abstract: An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a ? bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the high frequency side compared to the TEP value of the ligand of formula (2-1).
    Type: Application
    Filed: December 6, 2017
    Publication date: October 10, 2019
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, N.E. CHEMCAT CORPORATION
    Inventors: Junchul Choi, Norihisa Fukaya, Shunya Onozawa, Kazuhiko Sato, Hiroyuki Yasuda, Tomoteru Mizusaki, Yukio Takagi
  • Patent number: 10256475
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 500 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 8,500 ppm or less.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 9, 2019
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Takuya Tsubaki, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20190051910
    Abstract: To provide electrode catalyst which has the catalyst activity and durability equal to or more than the Pt/Pd/C catalyst. The electrode catalyst has a support and catalyst particles supported on the support. The catalyst particle has the core part formed on the support and the shell part formed on the core part. The core part contains a Ti oxide and Pd, and the shell part contains Pt.
    Type: Application
    Filed: January 24, 2017
    Publication date: February 14, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoteru Mizusaki, Yoko Nakamura, Kiyotaka Nagamori, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20190039051
    Abstract: To provide electrode catalyst which has the catalyst activity equal to or more than the Pt/Pd/C catalyst. The electrode catalyst 10A has a support 2 and catalyst particles 3a supported on the support. The catalyst particle has the core part 4 formed on the support, the first shell part 5a formed on the core part and the second shell part 6a formed on a part of the surface of the first shell part. The core part contains Pd, the first shell part contains Pt, and the second shell part contains the Ti oxide. A percentage of the Pt R1Pt (atom %) and a percentage of the Ti derived from the Ti oxide R1Ti (atom %) in an analytical region near a surface measured by X-ray photoelectron spectroscopy satisfy the conditions of the equation (1): 1.00?(R1Ti/R1Pt)?2.50.
    Type: Application
    Filed: January 24, 2017
    Publication date: February 7, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoteru Mizusaki, Yoko Nakamura, Kiyotaka Nagamori, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 10177395
    Abstract: To provide electrode catalyst (core-shell catalyst) having an excellent catalyst activity which contributes to lower the cost of the PEFC. The electrode catalyst has catalyst particles supported an a support. The catalyst particle has a core part containing simple Pd and a shell part containing simple Pt. A percentage RC (atom %) of the carbon of the support and a percentage RPd (atom %) of the simple Pd in an analytical region near a surface measured by X-ray photoelectron spectroscopy (XPS) satisfy the conditions of the following equation (1): 2.15?[100×RPd/(RPd+RC)].
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: January 8, 2019
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 10115992
    Abstract: Provided is an electrode catalyst in which the contents of chlorine (Cl) species and bromine (Br) species are reduced to a predetermined level or lower, capable of exhibiting sufficient catalyst performance. The electrode catalyst has a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 400 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 900 ppm or less.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 30, 2018
    Assignee: N.E. Chemcat Corporation
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 9893365
    Abstract: To provide electrode catalyst which has the catalyst activity and durability at a practically durable level and contributes to lowering of the cost in comparison with the conventional Pt/C catalyst. The electrode catalyst has a support and catalyst particles supported on the support. The catalyst particle has the core part, the first shell part formed on the core part, and the second shell part formed on the first shell part. The core part contains W compound including at least W carbide, the first shell part contains simple Pd, and the second shell part contains simple Pt.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 13, 2018
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20180013158
    Abstract: To provide electrode catalyst (core-shell catalyst) having an excellent catalyst activity which contributes to lower the cost of the PEFC. The electrode catalyst has catalyst particles supported an a support. The catalyst particle has a core part containing simple Pd and a shell part containing simple Pt. A percentage RC (atom %) of the carbon of the support and a percentage RPd (atom %) of the simple Pd in an analytical region near a surface measured by X-ray photoelectron spectroscopy (XPS) satisfy the conditions of the following equation (1): 2.15?[100×RPd/(RPd+RC)].
    Type: Application
    Filed: March 30, 2016
    Publication date: January 11, 2018
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20180001305
    Abstract: Provided is an electrode catalyst in which the contents of chlorine (Cl) species and bromine (Br) species are reduced to a predetermined level or lower, capable of exhibiting sufficient catalyst performance. The electrode catalyst has a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 400 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 900 ppm or less.
    Type: Application
    Filed: September 7, 2016
    Publication date: January 4, 2018
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka NAGAMORI, Tomoteru MIZUSAKI, Yoko NAKAMURA, Hiroshi IGARASHI, Yasuhiro SEKI
  • Publication number: 20170331118
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 500 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 8,500 ppm or less.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 16, 2017
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka NAGAMORI, Tomoteru MIZUSAKI, Yoko NAKAMURA, Takuya TSUBAKI, Hiroshi IGARASHI, Yasuhiro SEKI
  • Publication number: 20170331135
    Abstract: Provided is an electrode catalyst in which the contents of chlorine (Cl) species and bromine (Br) species are reduced to a predetermined level or lower, capable of exhibiting sufficient catalyst performance. The electrode catalyst has a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 400 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 900 ppm or less.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 16, 2017
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka NAGAMORI, Tomoteru MIZUSAKI, Yoko NAKAMURA, Hiroshi IGARASHI, Yasuhiro SEKI
  • Patent number: 9525180
    Abstract: Provided is an electrode catalyst production method capable of obtaining, through an easy operation, an electrode catalyst whose chlorine (Cl) species content has been reliably and sufficiently reduced, even when using as an electrode catalyst raw material an electrode catalyst precursor containing a high concentration of chlorine. The method is to produce an electrode catalyst having a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of a surface of the core part.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: December 20, 2016
    Assignee: N. E. CHEMCAT Corporation
    Inventors: Tomoteru Mizusaki, Kiyotaka Nagamori, Yoko Nakamura, Takuya Tsubaki
  • Patent number: 9496561
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. The electrode catalyst concurrently fulfills conditions expressed by the following formulae (1) and (2): (X1/M)?1.2 . . . (1) (X2/M)?47.0 . . . (2) (in the formula (1) and the formula (2), M represents an amount of substance (number of atoms) of one or more constituent metal elements of the shell part, X1 represents an amount of substance (number of atoms) of bromine (Br), and X2 represents an amount of substance (number of atoms) of chlorine (Cl)).
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: November 15, 2016
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Takuya Tsubaki, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20160322644
    Abstract: To provide electrode catalyst which has the catalyst activity and durability at a practically durable level and contributes to lowering of the cost in comparison with the conventional Pt/C catalyst. The electrode catalyst has a support and catalyst particles supported on the support. The catalyst particle has the core part, the first shell part formed on the core part, and the second shell part formed on the first shell part. The core part contains W compound including at least W carbide, the first shell part contains simple Pd, and the second shell part contains simple Pt.
    Type: Application
    Filed: August 27, 2015
    Publication date: November 3, 2016
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 9461313
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. The electrode catalyst concurrently fulfills conditions expressed by the following formulae (1) and (2): (X1/M)?1.2 . . . (1) (X2/M)?47.0 . . . (2) (in the formula (1) and the formula (2), M represents an amount of substance (number of atoms) of one or more constituent metal elements of the shell part, X1 represents an amount of substance (number of atoms) of bromine (Br), and X2 represents an amount of substance (number of atoms) of chlorine (Cl)).
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: October 4, 2016
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Takuya Tsubaki, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 9437876
    Abstract: Provided is a production method of an electrode catalyst that can reduce the content of chlorine species reliably and sufficiently through a simple operation, even when using an electrode catalyst precursor containing a high concentration of chlorine (Cl) species as a raw material of the electrode catalyst. The production method of the electrode catalyst has a core-shell structure including a core part formed on a support and a shell part formed to cover at least a part of a surface of the core part.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: September 6, 2016
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Yoko Nakamura, Kiyotaka Nagamori, Tomoteru Mizusaki, Takuya Tsubaki