Patents by Inventor Tomoya Kudo

Tomoya Kudo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11915919
    Abstract: A first spray unit (201) sprays a first sample into a first space (20) while charging the first sample. A second spray unit (202) sprays a second sample into the first space (20) or a second space (21) communicating with the first space (20) while charging the second sample. A determination unit (62) determines whether or not the second sample is sprayed from the second spray unit (202). A gas supply unit (74) supplies gas into the first space (20). A control unit (63) controls supply of the gas from the gas supply unit (74). In a case where the determination unit (62) determines that the second sample is sprayed from the second spray unit (202), the control unit (63) starts the supply of the gas from the gas supply unit (74) into the first space (20).
    Type: Grant
    Filed: May 27, 2019
    Date of Patent: February 27, 2024
    Assignee: SHIMADZU CORPORATION
    Inventor: Tomoya Kudo
  • Patent number: 11862451
    Abstract: An orthogonal acceleration time-of-flight mass spectrometer (1) includes: an ion ejector (123) which ejects measurement-target ions in a predetermined direction; an orthogonal accelerator (132) which accelerates ions in a direction orthogonal to the direction in which the ions are ejected; a ring electrode (131) located between the ion ejector and the orthogonal accelerator, the ring electrode having an opening for allowing ions to pass through and arranged so that the central axis (C2) of the opening is shifted from the central axis (C1) of the ion ejector in a direction along the axis of the acceleration of the ions by the orthogonal accelerator; a reflectron electrode (134) which creates a repelling electric field for reversing the direction of the ions accelerated by the orthogonal accelerator; and an ion detector (135) which detects ions after the direction of flight of the ions is reversed by the reflectron electrode.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: January 2, 2024
    Assignee: SHIMADZU CORPORATION
    Inventors: Takuya Suzumura, Daisuke Okumura, Tomoya Kudo
  • Publication number: 20230377869
    Abstract: An orthogonal acceleration time-of-flight mass spectrometer includes: a first vacuum chamber and a second vacuum chamber; an insulating spacer member; a former-stage-side ring electrode; subsequent-stage-side ring electrodes; a first fixation member including a first displacement member to displace a central axis of the former-stage-side ring electrode and the subsequent-stage-side ring electrodes in a predetermined direction orthogonal to the central axis by thermal expansion; and a second fixation member including a second displacement member to displace the central axis in the predetermined direction orthogonal to the central axis by thermal expansion, a difference between a thermal expansion amount of the first displacement member per unit temperature and a thermal expansion amount of the second displacement member per unit temperature being 30% or less of the thermal expansion amount of the first displacement member.
    Type: Application
    Filed: December 4, 2020
    Publication date: November 23, 2023
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoya KUDO
  • Publication number: 20230170199
    Abstract: An ion analyzer including: a base member fixed to a ion outflow port and having a cylindrical concave part; a cylindrical first conductive member accommodated in the concave part; a first ion flow controller fixed to an exposed end of the first conductive member; a cylindrical insulating member inserted into the first conductive member; a rod-shaped second conductive member inserted into the insulating member; a second ion flow controller being fixed to an exposed end of the second conductive member; a first power feeding unit that, when accommodated in the concave part, comes into contact with the first conductive member; and a second power feeding unit that, when accommodated in the concave part, comes into contact with the second conductive member when the first conductive member accommodates the second conductive member and the insulating member.
    Type: Application
    Filed: May 20, 2020
    Publication date: June 1, 2023
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoya KUDO
  • Publication number: 20230022148
    Abstract: An orthogonal acceleration time-of-flight mass spectrometer (1) includes: an ion ejector (123) which ejects measurement-target ions in a predetermined direction; an orthogonal accelerator (132) which accelerates ions in a direction orthogonal to the direction in which the ions are ejected; a ring electrode (131) located between the ion ejector and the orthogonal accelerator, the ring electrode having an opening for allowing ions to pass through and arranged so that the central axis (C2) of the opening is shifted from the central axis (C1) of the ion ejector in a direction along the axis of the acceleration of the ions by the orthogonal accelerator; a reflectron electrode (134) which creates a repelling electric field for reversing the direction of the ions accelerated by the orthogonal accelerator; and an ion detector (135) which detects ions after the direction of flight of the ions is reversed by the reflectron electrode.
    Type: Application
    Filed: May 10, 2022
    Publication date: January 26, 2023
    Applicant: SHIMADZU CORPORATION
    Inventors: Takuya SUZUMURA, Daisuke OKUMURA, Tomoya KUDO
  • Patent number: 11443934
    Abstract: A time-of-flight mass spectrometry device includes: an ion introduction unit; a vacuum chamber connected to the ion introduction unit; a support member provided inside the vacuum chamber; a flight tube having a part of the outer surface supported by the support member and provided inside the vacuum chamber; a temperature sensor provided in the vicinity of a connection portion with the support member of the vacuum chamber; a temperature adjustment element provided in the vicinity of the connection portion; and a temperature control unit that controls the temperature adjustment element based on a measurement result of the temperature sensor.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: September 13, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Tomoya Kudo
  • Patent number: 11361956
    Abstract: Inside a chamber (10) evacuated by a vacuum pump, a flight tube (12) is held via a support member (11) that is of insulation. The outside of the chamber (10) is surrounded by a temperature control unit (16) including a heater. A body (10a) of the chamber (10) is made of aluminum, and a coating layer (10b) by a black nickel plating is formed on the inner wall surface of the body (10a) of the chamber (10). Due to this, the radiation factor of the chamber (10) becomes higher than that of a conventional apparatus using only aluminum, and the thermal resistance of the radiation heat transfer path between the chamber (10) and the flight tube (12) becomes low, thus improving the temperature stability of the flight tube (12). Furthermore, the time constant of the temperature change of the flight tube (12) becomes small, thus reducing the time for the flight tube (12) to stabilize to a constant temperature.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: June 14, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Tomoya Kudo
  • Publication number: 20220130656
    Abstract: A first spray unit (201) sprays a first sample into a first space (20) while charging the first sample. A second spray unit (202) sprays a second sample into the first space (20) or a second space (21) communicating with the first space (20) while charging the second sample. A determination unit (62) determines whether or not the second sample is sprayed from the second spray unit (202). A gas supply unit (74) supplies gas into the first space (20). A control unit (63) controls supply of the gas from the gas supply unit (74). In a case where the determination unit (62) determines that the second sample is sprayed from the second spray unit (202), the control unit (63) starts the supply of the gas from the gas supply unit (74) into the first space (20).
    Type: Application
    Filed: May 27, 2019
    Publication date: April 28, 2022
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoya KUDO
  • Patent number: 11295945
    Abstract: A no-electric field region (246A) and an electric field region (246B) are formed in a flight tube (246). In the no-electric field region (246A), ions introduced from an ion emission unit fly. In the electric field region (246B), a reflectron (244) is provided and the ions having passed through the no-electric field region (246A) are reflected to the no-electric field region (246A) by an action of an electric field formed on an inner side of a plurality of electrodes (244A, 244B). A through-hole (246D) is formed in at least a part of the flight tube (246) to be closer to the electric field region (246B) than the no-electric field region (246A).
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: April 5, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Tomoya Kudo
  • Patent number: 11257666
    Abstract: A flight tube 246 is hollow, and ions emitted from an ion emission unit are introduced into the flight tube 246. A reflectron 244 is provided in the flight tube 246, and is configured by coaxially arranging a plurality of annular electrodes 244A and 244B. A vacuum vessel 247A that becomes in a vacuum state during analysis is formed in the vacuum chamber 247, and the flight tube 246 is provided in the vacuum vessel 247A. A temperature control mechanism 248 controls a temperature of the flight tube 246. An ambient temperature sensor 250 detects an ambient temperature outside the vacuum chamber 247. A target temperature of the temperature control mechanism 248 is set on the basis of the ambient temperature detected by the ambient temperature sensor 250.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: February 22, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Tomoya Kudo
  • Patent number: 11201046
    Abstract: A lead-in electrode, of an orthogonal acceleration time-of-flight mass spectrometer, includes: a main body having an ion passing part and a first member including a main-body accommodating part that is a through-hole. One surface of the first member includes an extension part to define a position of one surface of the main body. A second member is attached to the first member. A through-hole is provided at a position of the second member. One surface of the second member includes a first area in contact with a surface opposite to the one surface of the first member and a second area located inside with respect to the first area. The second area is formed lower than a surface, of the first area, in contact with the surface opposite to the one surface. A lead-in electrode elastic member is disposed, in the second area, between the first member and second members.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 14, 2021
    Assignee: SHIMADZU CORPORATION
    Inventors: Tomoya Kudo, Yusuke Sakagoshi
  • Patent number: 11152202
    Abstract: A transfer electrode unit (240) is configured by coaxially arranging a plurality of loop electrodes (241A, 241B, 241C), and guides ions to an orthogonal acceleration region (242C) by allowing the ions to pass through an inner side of the plurality of electrodes (241A, 241B, 241C) each of which is applied with a voltage. A voltage having a higher absolute value than the voltage applied to the plurality of electrodes (241A, 241B, 241C) is applied to a flight tube (246), and the ions accelerated in the orthogonal acceleration region (242C) are introduced to a flight space formed in the flight tube (246). A shield portion (241F) is provided between the transfer electrode unit (240) and the flight tube (246), and suppresses that an electric field derived from the voltage applied to the flight tube (246) enters the transfer electrode unit (240).
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 19, 2021
    Assignee: SHIMADZU CORPORATION
    Inventors: Tomoya Kudo, Daisuke Okumura
  • Publication number: 20210249248
    Abstract: A flight tube 246 is hollow, and ions emitted from an ion emission unit are introduced into the flight tube 246. A reflectron 244 is provided in the flight tube 246, and is configured by coaxially arranging a plurality of annular electrodes 244A and 244B. A vacuum vessel 247A that becomes in a vacuum state during analysis is formed in the vacuum chamber 247, and the flight tube 246 is provided in the vacuum vessel 247A. A temperature control mechanism 248 controls a temperature of the flight tube 246. An ambient temperature sensor 250 detects an ambient temperature outside the vacuum chamber 247. A target temperature of the temperature control mechanism 248 is set on the basis of the ambient temperature detected by the ambient temperature sensor 250.
    Type: Application
    Filed: May 14, 2018
    Publication date: August 12, 2021
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoya KUDO
  • Publication number: 20210249249
    Abstract: A no-electric field region (246A) and an electric field region (246B) are formed in a flight tube (246). In the no-electric field region (246A), ions introduced from an ion emission unit fly. In the electric field region (246B), a reflectron (244) is provided and the ions having passed through the no-electric field region (246A) are reflected to the no-electric field region (246A) by an action of an electric field formed on an inner side of a plurality of electrodes (244A, 244B). A through-hole (246D) is formed in at least a part of the flight tube (246) to be closer to the electric field region (246B) than the no-electric field region (246A).
    Type: Application
    Filed: May 16, 2018
    Publication date: August 12, 2021
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoya KUDO
  • Patent number: 11081333
    Abstract: Even if vibration is applied to an electrode, a connector section is not separated due to urge of a spring section by using a mass spectrometer that includes an electrode (plate-like electrode); a power source section that supplies electric power to the electrode with a predetermined voltage and/or current; a connection line formed of a conductive wire rod having elasticity for electrically connecting the electrode and the power source section; a connector section provided at one end of the connection line; a seat provided in the electrode to be contacted with the connector section; a fixation section provided in the connection line to be fixed to the power source section; and a spring section formed between the connector section and the fixation section of the connection line or in the connector section and for urging the connector section to the seat.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 3, 2021
    Assignee: SHIMADZU CORPORATION
    Inventors: Tomoya Kudo, Daisuke Okumura
  • Publication number: 20210233761
    Abstract: Inside a chamber (10) evacuated by a vacuum pump, a flight tube (12) is held via a support member (11) that is of insulation. The outside of the chamber (10) is surrounded by a temperature control unit (16) including a heater. A body (10a) of the chamber (10) is made of aluminum, and a coating layer (10b) by a black nickel plating is formed on the inner wall surface of the body (10a) of the chamber (10). Due to this, the radiation factor of the chamber (10) becomes higher than that of a conventional apparatus using only aluminum, and the thermal resistance of the radiation heat transfer path between the chamber (10) and the flight tube (12) becomes low, thus improving the temperature stability of the flight tube (12). Furthermore, the time constant of the temperature change of the flight tube (12) becomes small, thus reducing the time for the flight tube (12) to stabilize to a constant temperature.
    Type: Application
    Filed: March 24, 2021
    Publication date: July 29, 2021
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoya KUDO
  • Publication number: 20210210327
    Abstract: A time-of-flight mass spectrometry device includes: an ion introduction unit; a vacuum chamber connected to the ion introduction unit; a support member provided inside the vacuum chamber; a flight tube having a part of the outer surface supported by the support member and provided inside the vacuum chamber; a temperature sensor provided in the vicinity of a connection portion with the support member of the vacuum chamber; a temperature adjustment element provided in the vicinity of the connection portion; and a temperature control unit that controls the temperature adjustment element based on a measurement result of the temperature sensor.
    Type: Application
    Filed: May 23, 2018
    Publication date: July 8, 2021
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoya KUDO
  • Publication number: 20210142999
    Abstract: A lead-in electrode, of an orthogonal acceleration time-of-flight mass spectrometer, includes: a main body having an ion passing part and a first member including a main-body accommodating part that is a through-hole. One surface of the first member includes an extension part to define a position of one surface of the main body. A second member is attached to the first member. A through-hole is provided at a position of the second member. One surface of the second member includes a first area in contact with a surface opposite to the one surface of the first member and a second area located inside with respect to the first area. The second area is formed lower than a surface, of the first area, in contact with the surface opposite to the one surface. A lead-in electrode elastic member is disposed, in the second area, between the first member and second members.
    Type: Application
    Filed: May 30, 2018
    Publication date: May 13, 2021
    Applicant: SHIMADZU CORPORATION
    Inventors: Tomoya KUDO, Yusuke SAKAGOSHI
  • Publication number: 20210125819
    Abstract: A transfer electrode unit (240) is configured by coaxially arranging a plurality of loop electrodes (241A, 241B, 241C), and guides ions to an orthogonal acceleration region (242C) by allowing the ions to pass through an inner side of the plurality of electrodes (241A, 241B, 241C) each of which is applied with a voltage. A voltage having a higher absolute value than the voltage applied to the plurality of electrodes (241A, 241B, 241C) is applied to a flight tube (246), and the ions accelerated in the orthogonal acceleration region (242C) are introduced to a flight space formed in the flight tube (246). A shield portion (241F) is provided between the transfer electrode unit (240) and the flight tube (246), and suppresses that an electric field derived from the voltage applied to the flight tube (246) enters the transfer electrode unit (240).
    Type: Application
    Filed: May 16, 2018
    Publication date: April 29, 2021
    Applicant: SHIMADZU CORPORATION
    Inventors: Tomoya KUDO, Daisuke OKUMURA
  • Patent number: 10991566
    Abstract: Inside a chamber (10) evacuated by a vacuum pump, a flight tube (12) is held via a support member (11) that is of insulation. The outside of the chamber (10) is surrounded by a temperature control unit (16) including a heater. A body (10a) of the chamber (10) is made of aluminum, and a coating layer (10b) by a black nickel plating is formed on the inner wall surface of the body (10a) of the chamber (10). Due to this, the radiation factor of the chamber (10) becomes higher than that of a conventional apparatus using only aluminum, and the thermal resistance of the radiation heat transfer path between the chamber (10) and the flight tube (12) becomes low, thus improving the temperature stability of the flight tube (12). Furthermore, the time constant of the temperature change of the flight tube (12) becomes small, thus reducing the time for the flight tube (12) to stabilize to a constant temperature.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: April 27, 2021
    Assignee: SHIMADZU CORPORATION
    Inventor: Tomoya Kudo