Patents by Inventor Tomoyuki ARIMA

Tomoyuki ARIMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945923
    Abstract: Disclosed is a method for producing an electrolytic capacitor, the method including the steps of preparing an anode foil that includes a dielectric layer, a cathode foil, and a fiber structure; preparing a conductive polymer dispersion liquid that contains a conductive polymer component and a dispersion medium; producing a separator by applying the conductive polymer dispersion liquid to the fiber structure and then removing at least a portion of the dispersion medium; and producing a capacitor element by sequentially stacking the anode foil, the separator, and the cathode foil. The dispersion medium contains water. The fiber structure contains a synthetic fiber in an amount of 50 mass % or more. The fiber structure has a density of 0.2 g/cm3 or more and less than 0.45 g/cm3.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: April 2, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Daisuke Kubo, Hiroyuki Arima, Tomoyuki Tashiro, Kazuhiro Takatani, Kenta Chashiro, Shumpei Matsushita
  • Patent number: 11862998
    Abstract: To improve reliability in balancing while suppressing power consumption during balancing. A battery management device 1 includes cell cons 41 and 42 that perform balancing for adjusting voltages of a plurality of battery cells 2 that are secondary batteries, and a control unit 3 that controls the cell cons 41 and 42. The cell con 41 includes the main timer 412 that measures the elapsed time for stopping the cell con 41, and the stop management unit 413 that stops the cell con 41 when the main timer 412 is abnormal. In the battery management device 1, the battery cell 2 that supplies power to the main timer 412 and the stop management unit 413, and the lead storage battery 7 that supplies power to the control unit 3 are power supplies different from each other.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 2, 2024
    Assignee: Hitachi Astemo, Ltd.
    Inventors: Tomonori Kanai, Hikaru Miura, Tomoyuki Arima
  • Publication number: 20210265845
    Abstract: To improve reliability in balancing while suppressing power consumption during balancing. A battery management device 1 includes cell cons 41 and 42 that perform balancing for adjusting voltages of a plurality of battery cells 2 that are secondary batteries, and a control unit 3 that controls the cell cons 41 and 42. The cell con 41 includes the main timer 412 that measures the elapsed time for stopping the cell con 41, and the stop management unit 413 that stops the cell con 41 when the main timer 412 is abnormal. In the battery management device 1, the battery cell 2 that supplies power to the main timer 412 and the stop management unit 413, and the lead storage battery 7 that supplies power to the control unit 3 are power supplies different from each other.
    Type: Application
    Filed: May 20, 2019
    Publication date: August 26, 2021
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori KANAI, Hikaru MIURA, Tomoyuki ARIMA
  • Patent number: 10886578
    Abstract: Even when a service disconnect switch is opened, an integrated circuit connected to single battery cells are operated. The cell controller is provided with: the integrated circuits; a signal transmission path through which a signal is transmitted between the integrated circuits via the capacitors; and the connection circuit. The first integrated circuit is provided corresponding to the first cell group electrically connected to one side of the SD-SW, and the second integrated circuit is provided corresponding to the second cell group electrically connected to one side of the SD-SW. The connection circuit AC-couples the ground terminal GND of the first integrated circuit to the ground terminal GND of the second integrated circuit through the capacitor.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: January 5, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko Kudo, Tomonori Kanai, Tomoyuki Arima
  • Publication number: 20200152947
    Abstract: When a cell-switching jumper resistor is provided at a voltage detection line, measurement accuracy of a cell voltage is deteriorated due to an effect of the jumper resistor. Provided are cell voltage discharge lines connected to a cell voltage monitoring IC in order to discharge cell voltages of battery cells, and first jumper resistors that are mounted or are not mounted at cell voltage detection lines and the cell voltage discharge lines depending on whether or not each of the battery cells is used.
    Type: Application
    Filed: May 15, 2018
    Publication date: May 14, 2020
    Inventors: Tomoyuki ARIMA, Tomonori KANAI, Tomoyasu FUSE
  • Patent number: 10449862
    Abstract: Cell voltage measurement is executed immediately after termination of diagnosis on a cell voltage detection function. In a battery managing device 10, a voltage detecting unit 140 detects a terminal voltage of each of battery cells 21 and 22. An RC filter 110 is electrically connected to voltage detecting lines L1, L2, and L3, and a status variation causing unit 130 causes an electrical status variation with respect to the voltage detecting lines L1, L2, and L3. A voltage fluctuating unit 120 fluctuates the terminal voltage of the battery cells 21 and 22 in response to the electrical status variation that is caused by the status variation causing unit 130. A microcomputer 150 diagnoses the voltage detecting unit 140 on the basis of a detection result of the terminal voltage of the battery cells 21 and 22 by the voltage detecting unit 140 when the terminal voltage of the battery cells 21 and 22 is fluctuated by the voltage fluctuating unit 120.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: October 22, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori Kanai, Akihiko Kudo, Tomoyuki Arima, Akiko Tsukamoto
  • Patent number: 10393823
    Abstract: An object is to achieve management control of an assembled battery using an accurate measured value of a cell voltage. A battery system monitoring apparatus 10 that monitors and controls a battery system includes battery monitoring circuits 100 provided for respective cell groups 120. Each of the battery monitoring circuits 100 includes a cell voltage measurement module 6 that is connected with two electrodes of respective single battery cells 110 of a corresponding cell group 120 via voltage detection lines 2 and that measures a cell voltage of each of the single battery cells 110 at each of predetermined timings. An RC filter 4 is connected with the voltage detection lines 2. The RC filter 4 includes resistors and capacitors. The cell voltage measurement module 6 extends intervals at which the cell voltage is to be measured when a stored charge amount in the capacitor in the RC filter 4 changes.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: August 27, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko Kudo, Tomonori Kanai, Tomoyuki Arima, Akiko Tsukamoto
  • Patent number: 10386419
    Abstract: Measurement of a cell voltage is executed immediately after diagnosis of a battery management device is ended. In a battery management device, current sources repeatedly perform an energization operation to cause a current to flow to voltage detection lines with a magnitude of the current that enables each amount of charge stored in capacitors changed by one energization operation to fall within a range corresponding to a fluctuation width of terminal voltages of battery cells during the energization operation when resistors are in a normal state. When the difference between the current terminal voltage of the battery cell and the past terminal voltage of the battery cell is larger than the predetermined threshold value, the microcomputer diagnoses that the resistor is in the open state.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: August 20, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori Kanai, Akihiko Kudo, Tomoyuki Arima, Akiko Tsukamoto
  • Publication number: 20180241100
    Abstract: Even when a service disconnect switch is opened, an integrated circuit connected to single battery cells are operated. The cell controller is provided with: the integrated circuits; a signal transmission path through which a signal is transmitted between the integrated circuits via the capacitors; and the connection circuit. The first integrated circuit is provided corresponding to the first cell group electrically connected to one side of the SD-SW, and the second integrated circuit is provided corresponding to the second cell group electrically connected to one side of the SD-SW. The connection circuit AC-couples the ground terminal GND of the first integrated circuit to the ground terminal GND of the second integrated circuit through the capacitor.
    Type: Application
    Filed: August 8, 2016
    Publication date: August 23, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko KUDO, Tomonori KANAI, Tomoyuki ARIMA
  • Publication number: 20180052207
    Abstract: Measurement of a cell voltage is executed immediately after diagnosis of a battery management device is ended. In a battery management device, current sources repeatedly perform an energization operation to cause a current to flow to voltage detection lines with a magnitude of the current that enables each amount of charge stored in capacitors changed by one energization operation to fall within a range corresponding to a fluctuation width of terminal voltages of battery cells during the energization operation when resistors are in a normal state. When the difference between the current terminal voltage of the battery cell and the past terminal voltage of the battery cell is larger than the predetermined threshold value, the microcomputer diagnoses that the resistor is in the open state.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 22, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori KANAI, Akihiko KUDO, Tomoyuki ARIMA, Akiko TSUKAMOTO
  • Publication number: 20180043781
    Abstract: Cell voltage measurement is executed immediately after termination of diagnosis on a cell voltage detection function. In a battery managing device 10, a voltage detecting unit 140 detects a terminal voltage of each of battery cells 21 and 22. An RC filter 110 is electrically connected to voltage detecting lines L1, L2, and L3, and a status variation causing unit 130 causes an electrical status variation with respect to the voltage detecting lines L1, L2, and L3. A voltage fluctuating unit 120 fluctuates the terminal voltage of the battery cells 21 and 22 in response to the electrical status variation that is caused by the status variation causing unit 130. A microcomputer 150 diagnoses the voltage detecting unit 140 on the basis of a detection result of the terminal voltage of the battery cells 21 and 22 by the voltage detecting unit 140 when the terminal voltage of the battery cells 21 and 22 is fluctuated by the voltage fluctuating unit 120.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 15, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori KANAI, Akihiko KUDO, Tomoyuki ARIMA, Akiko TSUKAMOTO
  • Publication number: 20180017631
    Abstract: An object is to achieve management control of an assembled battery using an accurate measured value of a cell voltage. A battery system monitoring apparatus 10 that monitors and controls a battery system includes battery monitoring circuits 100 provided for respective cell groups 120. Each of the battery monitoring circuits 100 includes a cell voltage measurement module 6 that is connected with two electrodes of respective single battery cells 110 of a corresponding cell group 120 via voltage detection lines 2 and that measures a cell voltage of each of the single battery cells 110 at each of predetermined timings. An RC filter 4 is connected with the voltage detection lines 2. The RC filter 4 includes resistors and capacitors. The cell voltage measurement module 6 extends intervals at which the cell voltage is to be measured when a stored charge amount in the capacitor in the RC filter 4 changes.
    Type: Application
    Filed: February 3, 2016
    Publication date: January 18, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko KUDO, Tomonori KANAI, Tomoyuki ARIMA, Akiko TSUKAMOTO
  • Patent number: 9255957
    Abstract: An earth fault detection circuit for detecting an earth fault between a high-voltage battery and a motor includes: an A.C. signal generation portion generating an A.C. signal; a first capacitive element between the A.C. signal generation portion and one end side of the high-voltage battery; a voltage dividing circuit dividing a voltage on the one end side of the high-voltage battery; an earth fault detection portion detecting the earth fault between the high-voltage battery and the motor based on an earth fault detection signal inputted thereto; and a second capacitive element inputting an A.C. component of the voltage, on the one end side of the high-voltage battery, which is obtained by the voltage division in the voltage dividing circuit as the earth fault detection signal to the earth fault detection portion.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 9, 2016
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomoyuki Arima, Akihiko Kudo
  • Publication number: 20140049860
    Abstract: An earth fault detection circuit for detecting an earth fault between a high-voltage battery and a motor includes: an A.C. signal generation portion generating an A.C. signal; a first capacitive element between the A.C. signal generation portion and one end side of the high-voltage battery; a voltage dividing circuit dividing a voltage on the one end side of the high-voltage battery; an earth fault detection portion detecting the earth fault between the high-voltage battery and the motor based on an earth fault detection signal inputted thereto; and a second capacitive element inputting an A.C. component of the voltage, on the one end side of the high-voltage battery, which is obtained by the voltage division in the voltage dividing circuit as the earth fault detection signal to the earth fault detection portion.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 20, 2014
    Applicant: Hitachi Vehicle Energy, Ltd.
    Inventors: Tomoyuki ARIMA, Akihiko KUDO
  • Publication number: 20080297443
    Abstract: A plasma display apparatus is disclosed that includes a panel substrate, a chassis adhered to a rear surface of the panel substrate and supporting the panel substrate, and plural address driver modules arranged along a rim portion of the panel substrate. Each address driver module including a flexible board and an address driver circuit provided on the flexible board and having one end fixed to a front surface rim part of the panel substrate. The chassis has plural through-holes formed in a rim part of the chassis. The plural through-holes expose a part of the panel substrate to which plural attachment parts are fixed. The plural attachment parts include adjacently arranged attachments parts fixed to the panel substrate by a coupling part. The other end of each address driver module is fixed to the corresponding attachment part.
    Type: Application
    Filed: October 12, 2007
    Publication date: December 4, 2008
    Inventors: Tomoyuki ARIMA, Yoshiro MURAYASU