Patents by Inventor Tomoyuki Awazu

Tomoyuki Awazu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190081332
    Abstract: An object of the present invention is to inexpensively provide a porous metal body which is usable for an electrode of a fuel cell or the like and which has excellent corrosion resistance. There is provided a porous metal body for a fuel cell, which is a sheet-shaped porous metal body, including at least nickel, tin, and chromium, in which the chromium concentration of at least one surface of the porous metal body is 3% to 50% by mass. In the porous metal body, preferably, the chromium concentration of one surface is higher than the chromium concentration of another surface.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 14, 2019
    Inventors: Kazuki OKUNO, Tomoyuki AWAZU, Masahiro KATO, Masatoshi MAJIMA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Publication number: 20190067703
    Abstract: Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Kazuki OKUNO, Masahiro KATO, Masatoshi MAJIMA, Tomoyuki AWAZU, Hidetoshi SAITO, Junichi NISHIMURA, Keiji SHIRAISHI, Hitoshi TSUCHIDA, Kengo TSUKAMOTO
  • Patent number: 10205177
    Abstract: A porous metal body is provided that is inexpensive, usable for an electrode of a fuel cell or the like, and has excellent corrosion resistance. There is provided a porous metal body for a fuel cell, which is a sheet-shaped porous metal body, including at least nickel, tin, and chromium, in which the chromium concentration of at least one surface of the porous metal body is 3% to 50% by mass. In the porous metal body, preferably, the chromium concentration of one surface is higher than the chromium concentration of another surface.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: February 12, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Tomoyuki Awazu, Masahiro Kato, Masatoshi Majima, Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito
  • Publication number: 20190044159
    Abstract: A porous metal body has a three-dimensional mesh-like structure skeleton and containing at least nickel and tin. The nickel content is 50 mass % or more, and the tin content is 5 mass % or more and 25 mass % or less. The porous metal body has a thickness of 0.10 mm or more and 0.50 mm or less.
    Type: Application
    Filed: January 23, 2017
    Publication date: February 7, 2019
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazunari MIYAMOTO, Tomoyuki AWAZU, Masatoshi MAJIMA, Kazuki OKUNO, Takahiro HIGASHINO
  • Publication number: 20190017144
    Abstract: A method for separating metal components from a treatment material containing a silicate and metal elements includes: a reaction step of reacting the treatment material and a molten alkali hydroxide in which bubbles due to water vapor derived from water are generated by heating a hydroxide of an alkali metal or an alkaline-earth metal and the water in a state where the hydroxide and the water coexist, to obtain a reaction product; and a first precipitation step of dissolving the reaction product of the treatment material and the molten alkali hydroxide after the reaction step in water, thereby generating a precipitate containing the metal elements.
    Type: Application
    Filed: December 27, 2016
    Publication date: January 17, 2019
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Tomoyuki AWAZU, Masatoshi MAJIMA, Mitsutaka TSUBOKURA, Tetsuo OISHI
  • Patent number: 10164262
    Abstract: Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: December 25, 2018
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Masatoshi Majima, Tomoyuki Awazu, Hidetoshi Saito, Junichi Nishimura, Keiji Shiraishi, Hitoshi Tsuchida, Kengo Tsukamoto
  • Patent number: 10128513
    Abstract: An object of the present invention is to provide, at a low cost, a porous metal body that can be used in an electrode of a fuel cell and that has better corrosion resistance. The porous metal body has a three-dimensional mesh-like structure and contains nickel (Ni), tin (Sn), and chromium (Cr). A content ratio of the tin is 10% by mass or more and 25% by mass or less, and a content ratio of the chromium is 1% by mass or more and 10% by mass or less. On a cross section of a skeleton of the porous metal body, the porous metal body contains a solid solution phase of chromium, nickel, and tin. The solid solution phase contains a solid solution phase of chromium and trinickel tin (Ni3Sn), the solid solution phase having a chromium content ratio of 2% by mass or less, and does not contain a solid solution phase that is other than a solid solution phase of chromium and trinickel tin (Ni3Sn) and that has a chromium content ratio of less than 1.5% by mass.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: November 13, 2018
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito
  • Publication number: 20180261853
    Abstract: A porous metal body includes a three-dimensional mesh-like structure consisting of a skeleton, the porous metal body having a flat plate-like external form including a pair of main surfaces and end surfaces that connect the pair of main surfaces to each other, in which the skeleton includes a main metal layer consisting of nickel or a nickel alloy, and an oxide layer on a surface of the main metal layer, in which the oxide layer is not arranged on portions of the surface of the main metal layer included in the pair of main surfaces of the porous metal body.
    Type: Application
    Filed: August 30, 2016
    Publication date: September 13, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki OKUNO, Takahiro HIGASHINO, Masatoshi MAJIMA, Tomoyuki AWAZU
  • Publication number: 20180219232
    Abstract: A plate-like porous metal body having a three-dimensional mesh-like structure and containing nickel (Ni). The content of the nickel in the porous metal body is 50% by mass or more. The porous metal body has a thickness of 0.10 mm or more and 0.50 mm or less.
    Type: Application
    Filed: July 25, 2016
    Publication date: August 2, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki OKUNO, Takahiro HIGASHINO, Tomoyuki AWAZU, Masatoshi MAJIMA
  • Publication number: 20180205105
    Abstract: An electrolyte layer-anode composite member for a fuel cell includes a solid electrolyte layer containing an ionically conductive metal oxide M1, a first anode layer containing an ionically conductive metal oxide M2 and nickel oxide, and a second anode layer interposed between the solid electrolyte layer and the first anode layer and containing an ionically conductive metal oxide M3 and nickel oxide. A volume content Cn1 of the nickel oxide in the first anode layer and a volume content Cn2 of the nickel oxide in the second anode layer satisfy the relation Cn1<Cn2.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 19, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hisao TAKEUCHI, Takashi MATSUURA, Naho MIZUHARA, Chihiro HIRAIWA, Tomoyuki AWAZU, Masatoshi MAJIMA
  • Publication number: 20180073156
    Abstract: A method for producing copper includes a first step of dissolving copper by adding a copper-containing material to a solution containing an oxidant, and a second step of depositing copper on a surface of a cathode by bringing a solution (A) containing the oxidant in a reduced state into contact with a solution (B) containing copper dissolved therein with a separator provided between the solution (A) and the solution (B), arranging an anode in the solution (A), arranging the cathode in the solution (B), and applying a voltage to both the electrodes, while the oxidant contained in the solution (A) is regenerated, in which the oxidant has a standard electrode potential of 1.6 V or less.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 15, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Mitsuyasu OGAWA, Tomoyuki AWAZU, Masatoshi MAJIMA, Masahiro KATO
  • Publication number: 20180030607
    Abstract: A method for producing a nickel alloy porous body includes a step of applying a coating material that contains a nickel alloy powder of nickel and an added metal, the nickel alloy powder having a volume-average particle size of 10 ?m or less, onto a surface of a skeleton of a resin formed body having a three-dimensional mesh-like structure; a step of plating with nickel the surface of the skeleton of the resin formed body onto which the coating material has been applied; a step of removing the resin formed body; and a step of diffusing the added metal into the nickel by a heat treatment.
    Type: Application
    Filed: January 22, 2016
    Publication date: February 1, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki OKUNO, Takahiro HIGASHINO, Tomoyuki AWAZU, Masatoshi MAJIMA, Junichi NISHIMURA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Publication number: 20170092957
    Abstract: Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
    Type: Application
    Filed: December 9, 2016
    Publication date: March 30, 2017
    Inventors: Kazuki OKUNO, Masahiro KATO, Masatoshi MAJIMA, Tomoyuki AWAZU, Hidetoshi SAITO, Junichi NISHIMURA, Keiji SHIRAISHI, Hitoshi TSUCHIDA, Kengo TSUKAMOTO
  • Publication number: 20170069918
    Abstract: An object of the present invention is to provide, at a low cost, a porous metal body that can be used in an electrode of a fuel cell and that has better corrosion resistance. The porous metal body has a three-dimensional mesh-like structure and contains nickel (Ni), tin (Sn), and chromium (Cr). A content ratio of the tin is 10% by mass or more and 25% by mass or less, and a content ratio of the chromium is 1% by mass or more and 10% by mass or less. On a cross section of a skeleton of the porous metal body, the porous metal body contains a solid solution phase of chromium, nickel, and tin. The solid solution phase contains a solid solution phase of chromium and trinickel tin (Ni3Sn), the solid solution phase having a chromium content ratio of 2% by mass or less, and does not contain a solid solution phase that is other than a solid solution phase of chromium and trinickel tin (Ni3Sn) and that has a chromium content ratio of less than 1.5% by mass.
    Type: Application
    Filed: February 20, 2015
    Publication date: March 9, 2017
    Inventors: Kazuki OKUNO, Masahiro KATO, Tomoyuki AWAZU, Masatoshi MAJIMA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Patent number: 9455464
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11 g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11 a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: September 27, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20160218385
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11 g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11 a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Application
    Filed: April 6, 2016
    Publication date: July 28, 2016
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Tetsuya KUWABARA, Tomoyuki AWAZU, Naho MIZUHARA, Toshio UEDA, Hideyuki DOI, Toshiyuki KURAMOTO
  • Publication number: 20160156045
    Abstract: An object of the present invention is to inexpensively provide a porous metal body which is usable for an electrode of a fuel cell or the like and which has excellent corrosion resistance. There is provided a porous metal body for a fuel cell, which is a sheet-shaped porous metal body, including at least nickel, tin, and chromium, in which the chromium concentration of at least one surface of the porous metal body is 3% to 50% by mass. In the porous metal body, preferably, the chromium concentration of one surface is higher than the chromium concentration of another surface.
    Type: Application
    Filed: April 9, 2014
    Publication date: June 2, 2016
    Applicants: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki OKUNO, Tomoyuki AWAZU, Masahiro KATO, Masatoshi MAJIMA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Publication number: 20160138164
    Abstract: Provided is a porous metal body containing at least nickel, tin, and chromium. An example of a method of producing such a porous metal body is a method including a conductive-coating-layer formation step of forming a conductive coating layer containing chromium on a surface of a porous base formed of a resin material; a metal-layer formation step of forming a nickel layer and a tin layer in any order on a surface of the conductive coating layer; a removal step of removing the porous base; and a diffusion step of, by a heat treatment, causing interdiffusion of metal atoms between the nickel layer and the tin layer and diffusing chromium contained in the conductive coating layer into the nickel layer and the tin layer.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 19, 2016
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito
  • Patent number: 9325024
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 26, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Patent number: 9184448
    Abstract: Provided is a method of producing an aluminum structure using a porous resin molded body having a three-dimensional network structure, with which it is possible to form an aluminum structure having a low oxide content in the surface of aluminum (i.e., having an oxide film with a small thickness), and in particular, it is possible to obtain an aluminum porous body that has a large area. The method includes a step of preparing an aluminum-coated resin molded body in which an aluminum layer is formed, directly or with another layer therebetween, on a surface of a resin molded body composed of urethane, and a heat treatment step in which the aluminum-coated resin molded body is subjected to heat treatment at a temperature equal to or higher than 270° C. and lower than 660° C. to decompose the resin molded body.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 10, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kotaro Kimura, Akihisa Hosoe, Takayasu Sugihara, Osamu Ohama, Kazuki Okuno, Tomoyuki Awazu, Koji Nitta