Patents by Inventor Tomoyuki Ishimatsu

Tomoyuki Ishimatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901325
    Abstract: Provided is a multilayer substrate including laminated semiconductor substrates each having a penetrating hole (hereinafter referred to as through hole) having a plated film formed in the inner surface. The multilayer substrate has excellent conduction characteristics and can be manufactured at low cost. Conductive particles are selectively present at a position where the through holes face each other as viewed in a plan view of the multilayer substrate. The multilayer substrate has a connection structure in which the facing through holes are connected by the conductive particles, and the semiconductor substrates each having the through hole are bonded by an insulating adhesive.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: February 13, 2024
    Assignee: DEXERIALS CORPORATION
    Inventors: Seiichiro Shinohara, Yasushi Akutsu, Tomoyuki Ishimatsu
  • Patent number: 11624011
    Abstract: A thermosetting adhesive sheet capable of reducing semiconductor wafer warping and chipping and a method for manufacturing a semiconductor device includes a thermosetting adhesive layer formed from a resin composition containing a resin component and a filler, the resin component containing an epoxy compound and a curing agent, a total value obtained by multiplying the reciprocal of epoxy equivalent of the epoxy compound by content of the epoxy compound in the resin component being 1.15E?04 or more, and blending amount of the filler being 50 pts. mass or more with respect to 100 pts. mass of the resin component; the thermosetting adhesive sheet is applied to a ground surface of a semiconductor and cured before dicing.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: April 11, 2023
    Assignee: LINTEC CORPORATION
    Inventors: Daichi Mori, Tomoyuki Ishimatsu
  • Patent number: 11402408
    Abstract: An electrical characteristics inspection tool capable of inspecting electrical characteristics even when an oxide film is formed on pads or bumps formed at a fine pitch. The electrical characteristics inspection tool includes: a flexible sheet; a through electrode having a recess that is recessed from one surface of the flexible sheet; and a conductive elastomer disposed in the recess of the through electrode. Electrical characteristics can be inspected even when an oxide film is formed on pads or bumps of an inspection object by bringing the conductive elastomer into contact with the pads or bumps and bringing a probe into contact with the through electrode since the conductive particles in the conductive elastomer break through the oxide film.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: August 2, 2022
    Assignee: DEXERIALS CORPORATION
    Inventors: Tomoyuki Ishimatsu, Hiroyuki Kumakura, Masaharu Aoki, Takako Kubota
  • Patent number: 10943879
    Abstract: A bump-forming film is used for forming, on a semiconductor device such as a bumpless IC chip, bumps which are low in cost and can achieve stable conduction reliability. The bump-forming film is configured such that conductive fillers for bumps are arranged regularly in a planar view in an insulating adhesive resin layer. The regular arrangement has a periodic repeating unit in the longitudinal direction of the film. The straight line which connects one ends of the conductive fillers for bumps in the thickness direction of the film is substantially parallel to the surface of the film.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: March 9, 2021
    Assignee: DEXERIALS CORPORATION
    Inventors: Yasushi Akutsu, Tomoyuki Ishimatsu
  • Patent number: 10832830
    Abstract: The present invention provides an anisotropic electrically conductive film with a structure, in which electrically conductive particles are disposed at lattice points of a planar lattice pattern in an electrically insulating adhesive base layer. A proportion of the lattice points, at which no electrically conductive particle is disposed, with respect to all the lattice points of the planar lattice pattern assumed as a reference region, is less than 20%. A proportion of the lattice points, at which plural electrically conductive particles are disposed in an aggregated state, with respect to all the lattice points of the planar lattice pattern, is not greater than 15%. A sum of omission of the electrically conductive particle and an aggregation of the electrically conductive particles is less than 25%.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: November 10, 2020
    Assignee: DEXERIALS CORPORATION
    Inventors: Tomoyuki Ishimatsu, Reiji Tsukao
  • Publication number: 20200152352
    Abstract: The present invention provides an anisotropic electrically conductive film with a structure, in which electrically conductive particles are disposed at lattice points of a planar lattice pattern in an electrically insulating adhesive base layer. A proportion of the lattice points, at which no electrically conductive particle is disposed, with respect to all the lattice points of the planar lattice pattern assumed as a reference region, is less than 20%. A proportion of the lattice points, at which plural electrically conductive particles are disposed in an aggregated state, with respect to all the lattice points of the planar lattice pattern, is not greater than 15%. A sum of omission of the electrically conductive particle and an aggregation of the electrically conductive particles is less than 25%.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 14, 2020
    Applicant: DEXERIALS CORPORATION
    Inventors: Tomoyuki ISHIMATSU, Reiji TSUKAO
  • Publication number: 20200141978
    Abstract: An electrical characteristics inspection tool capable of inspecting electrical characteristics even when an oxide film is formed on pads or bumps formed at a fine pitch. The electrical characteristics inspection tool includes: a flexible sheet; a through electrode having a recess that is recessed from one surface of the flexible sheet; and a conductive elastomer disposed in the recess of the through electrode. Electrical characteristics can be inspected even when an oxide film is formed on pads or bumps of an inspection object by bringing the conductive elastomer into contact with the pads or bumps and bringing a probe into contact with the through electrode since the conductive particles in the conductive elastomer break through the oxide film.
    Type: Application
    Filed: January 16, 2018
    Publication date: May 7, 2020
    Applicant: DEXERIALS CORPORATION
    Inventors: Tomoyuki ISHIMATSU, Hiroyuki KUMAKURA, Masaharu AOKI, Takako KUBOTA
  • Patent number: 10589502
    Abstract: The present invention is to provide an anisotropic conductive film that excels in dispersing conductive particles and trapping the particles, and maintains conduction reliability even between narrow-pitched terminals. By a method for manufacturing an anisotropic conductive film containing conductive particles, the conductive particles are buried in grooves in a sheet having the grooves regularly formed in the same direction, the conductive particles are arranged, a first resin film having a thermo-setting resin layer formed on a stretchable base film is laminated on the surface of the sheet on the side of the grooves to transfer and attach the conductive particles to the first resin film, the first resin film is uniaxially stretched in a direction other than the direction perpendicular to the array direction of the conductive particles, and a second resin film is laminated.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: March 17, 2020
    Assignee: DEXERIALS CORPORATION
    Inventor: Tomoyuki Ishimatsu
  • Patent number: 10575410
    Abstract: An anisotropic conductive film includes, as conductive particles for anisotropic conductive connection, metal particles such as solder particles having on the surface an oxide film. In this anisotropic conductive film, the metal particles are contained in an insulating film and regularly arranged as viewed in a plan view. A flux is disposed to be in contact with, or in proximity to, at least one of ends of the metal particles on a front surface side of the anisotropic conductive film and a rear surface side of the anisotropic conductive film. Preferable metal particles are solder particles. Preferably, the insulating film has a structure of two layers, and the metal particles are disposed between the two layers.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: February 25, 2020
    Assignee: DEXERIALS CORPORATION
    Inventors: Kenichi Haga, Tomoyuki Ishimatsu, Yasushi Akutsu
  • Patent number: 10566108
    Abstract: The present invention provides an anisotropic electrically conductive film with a structure, in which electrically conductive particles are disposed at lattice points of a planar lattice pattern in an electrically insulating adhesive base layer. A proportion of the lattice points, at which no electrically conductive particle is disposed, with respect to all the lattice points of the planar lattice pattern assumed as a reference region, is less than 20%. A proportion of the lattice points, at which plural electrically conductive particles are disposed in an aggregated state, with respect to all the lattice points of the planar lattice pattern, is not greater than 15%. A sum of omission of the electrically conductive particle and an aggregation of the electrically conductive particles is less than 25%.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 18, 2020
    Assignee: DEXERIALS CORPORATION
    Inventors: Tomoyuki Ishimatsu, Reiji Tsukao
  • Patent number: 10442958
    Abstract: An anisotropic conductive film contains conductive particles and spacers. The spacers are arranged at a central part of the film in a width direction. The central part of the film in the width direction represents 20 to 80% of the overall width of the film. The height of the spacers in the thickness direction of the anisotropic conductive film is larger than 5 ?m and less than 75 ?m. Such an anisotropic conductive film has a layered structure having a first insulating adhesion layer and a second insulating adhesion layer, wherein the conductive particles are dispersed in the first insulating adhesion layer, and the spacers are regularly arranged on a surface of the first insulating adhesion layer on a side of the second insulating adhesion layer.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: October 15, 2019
    Assignee: DEXERIALS CORPORATION
    Inventors: Yuta Araki, Tomoyuki Ishimatsu
  • Publication number: 20190308403
    Abstract: The present invention is to provide an anisotropic conductive film that excels in dispersing conductive particles and trapping the particles, and maintains conduction reliability even between narrow-pitched terminals. By a method for manufacturing an anisotropic conductive film containing conductive particles, the conductive particles are buried in grooves in a sheet having the grooves regularly formed in the same direction, the conductive particles are arranged, a first resin film having a thermo-setting resin layer formed on a stretchable base film is laminated on the surface of the sheet on the side of the grooves to transfer and attach the conductive particles to the first resin film, the first resin film is uniaxially stretched in a direction other than the direction perpendicular to the array direction of the conductive particles, and a second resin film is laminated.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventor: Tomoyuki ISHIMATSU
  • Publication number: 20190237214
    Abstract: The present invention provides an anisotropic electrically conductive film with a structure, in which electrically conductive particles are disposed at lattice points of a planar lattice pattern in an electrically insulating adhesive base layer. A proportion of the lattice points, at which no electrically conductive particle is disposed, with respect to all the lattice points of the planar lattice pattern assumed as a reference region, is less than 20%. A proportion of the lattice points, at which plural electrically conductive particles are disposed in an aggregated state, with respect to all the lattice points of the planar lattice pattern, is not greater than 15%. A sum of omission of the electrically conductive particle and an aggregation of the electrically conductive particles is less than 25%.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Applicant: DEXERIALS CORPORATION
    Inventors: Tomoyuki ISHIMATSU, Reiji TSUKAO
  • Patent number: 10350872
    Abstract: The present invention is to provide an anisotropic conductive film that excels in dispersing conductive particles and trapping the particles, and maintains conduction reliability even between narrow-pitched terminals. By a method for manufacturing an anisotropic conductive film containing conductive particles, the conductive particles are buried in grooves in a sheet having the grooves regularly formed in the same direction, the conductive particles are arranged, a first resin film having a thermo-setting resin layer formed on a stretchable base film is laminated on the surface of the sheet on the side of the grooves to transfer and attach the conductive particles to the first resin film, the first resin film is uniaxially stretched in a direction other than the direction perpendicular to the array direction of the conductive particles, and a second resin film is laminated.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: July 16, 2019
    Assignee: DEXERIALS CORPORATION
    Inventor: Tomoyuki Ishimatsu
  • Patent number: 10312125
    Abstract: A protective tape that improves solder bonding properties and reduces wafer warping. The protective tape includes, in the following order, an adhesive agent layer, a first thermoplastic resin layer, a second thermoplastic resin layer, and a matrix film layer. The protective tape satisfies the conditions expressed by the following formulae (1) to (3): Ga>Gb??(1) Ta<Tb??(2) (Ga*Ta+Gb*Tb)/(Ta+Tb)?1.4E+06 Pa.??(3) Ga represents a shear storage modulus of the first thermoplastic resin layer at a pasting temperature at which the protective tape is pasted; Gb represents a shear storage modulus of the second thermoplastic resin layer at the pasting temperature at which the protective tape is pasted; Ta represents a thickness of the first thermoplastic resin layer; and Tb represents a thickness of the second thermoplastic resin layer.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: June 4, 2019
    Assignee: DEXERIALS CORPORATION
    Inventors: Hironobu Moriyama, Hidekazu Yagi, Tomoyuki Ishimatsu, Katsuyuki Ebisawa, Keiji Honjyo, Junichi Kaneko
  • Patent number: 10304587
    Abstract: The present invention provides an anisotropic electrically conductive film with a structure, in which electrically conductive particles are disposed at lattice points of a planar lattice pattern in an electrically insulating adhesive base layer. A proportion of the lattice points, at which no electrically conductive particle is disposed, with respect to all the lattice points of the planar lattice pattern assumed as a reference region, is less than 20%. A proportion of the lattice points, at which plural electrically conductive particles are disposed in an aggregated state, with respect to all the lattice points of the planar lattice pattern, is not greater than 15%. A sum of omission of the electrically conductive particle and an aggregation of the electrically conductive particles is less than 25%.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: May 28, 2019
    Assignee: DEXERIALS CORPORATION
    Inventors: Tomoyuki Ishimatsu, Reiji Tsukao
  • Patent number: 10273386
    Abstract: Provided are a thermosetting adhesive sheet and a method for manufacturing a semiconductor device capable of reducing semiconductor wafer warping and chipping. The thermosetting adhesive sheet includes a thermosetting adhesive layer containing a resin component and a filler, the resin component containing a (meth)acrylate and a polymerization initiator, the (meth)acrylate containing a solid (meth)acrylate and a trifunctional or higher functional (meth)acrylate, content of the solid (meth)acrylate in the resin component being 55 wt % or more; a total value obtained by multiplying the number of functional groups per unit molecular weight of the (meth)acrylate by content of the (meth)acrylate in the resin component being 2.7E-03 or more, and blending amount of the filler being 80 to 220 pts. mass with respect to 100 pts. mass of the resin component.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: April 30, 2019
    Assignee: DEXERIALS CORPORATION
    Inventors: Daichi Mori, Tomoyuki Ishimatsu
  • Patent number: 10199358
    Abstract: Provided is a multilayer substrate obtained by laminating semiconductor substrates each having a trough electrode. The multilayer substrate has excellent conduction characteristics and can be manufactured at low cost. Conductive particles are each selectively present at a position where the through electrodes face each other as viewed in a plan view of the multilayer substrate. The multilayer substrate has a connection structure in which the facing through electrodes are connected by the conductive particles, and the semiconductor substrates each having the through electrode are bonded by an insulating adhesive.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: February 5, 2019
    Assignee: DEXERIALS CORPORATION
    Inventors: Yasushi Akutsu, Tomoyuki Ishimatsu
  • Publication number: 20190016930
    Abstract: An adhesive composition having excellent life properties is provided. This adhesive composition achieves excellent life properties by containing an epoxy compound, an aluminum chelating agent, and a hindered amine compound. This is presumably because the aluminum chelating agent stably exists due to the coordination of the nitrogen atom of the hindered amine compound with aluminum of the aluminum chelating agent.
    Type: Application
    Filed: December 19, 2016
    Publication date: January 17, 2019
    Applicant: DEXERIALS CORPORATION
    Inventors: Hidetsugu NAMIKI, Tomoyuki ISHIMATSU, Takashi MATSUMURA, Masaharu AOKI
  • Publication number: 20180320031
    Abstract: A thermosetting adhesive sheet capable of reducing semiconductor wafer warping and chipping and a method for manufacturing a semiconductor device includes a thermosetting adhesive layer formed from a resin composition containing a resin component and a filler, the resin component containing an epoxy compound and a curing agent, a total value obtained by multiplying the reciprocal of epoxy equivalent of the epoxy compound by content of the epoxy compound in the resin component being 1.15E-04 or more, and blending amount of the filler being 50 pts. mass or more with respect to 100 pts. mass of the resin component; the thermosetting adhesive sheet is applied to a ground surface of a semiconductor and cured before dicing.
    Type: Application
    Filed: December 13, 2016
    Publication date: November 8, 2018
    Applicant: DEXERIALS CORPORATION
    Inventors: Daichi MORI, Tomoyuki ISHIMATSU