Patents by Inventor Tomoyuki Maeda

Tomoyuki Maeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150092492
    Abstract: In response to a search start instruction, a read address signal including address sequences for blocks is generated and the read address signal is provided to a block management memory to successively read sequences of erasure count data pieces corresponding to the blocks from the block management memory. Thereafter, when the erasure count data piece read from the block management memory represents an erasure count smaller than a minimum erasure count data piece, the erasure count data piece is imported and retained and outputted as the minimum erasure count data piece. Also, the read address signal is imported and retained and an address indicated by the read address signal is outputted as a minimum erasure count address.
    Type: Application
    Filed: September 11, 2014
    Publication date: April 2, 2015
    Applicant: LAPIS SEMICONDUCTOR CO., LTD.
    Inventors: Takuya MATSUMOTO, Satoshi MIYAZAKI, Tomoyuki MAEDA
  • Patent number: 8968526
    Abstract: There are provided a method for manufacturing a magnetic recording medium which is excellent in terms of both the recording and reproduction characteristics and the thermal fluctuation characteristics without reducing the density and hardness of the perpendicular magnetic layer; a magnetic recording medium; and a magnetic recording and reproducing apparatus with which an excellent recording density is achieved, wherein, in the method for manufacturing the magnetic recording medium, at least a portion of the perpendicular magnetic layer 4 is formed as a magnetic layer having a granular structure that contains Co as a major component and also contains an oxide of at least one nonmagnetic metal selected from the group consisting of Cr, Si, Ta, Al, Ti, W and Mg; a target for forming the perpendicular magnetic layer 4 by the sputtering process is prepared so as to include an oxide of Co and a compound of Co and at least one nonmagnetic metal selected from the group consisting of Cr, Si, Ta, Al, Ti, W and Mg, an
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: March 3, 2015
    Assignees: Showa Denko K.K., Kabushiki Kaisha Toshiba, Tohoku University
    Inventors: Shingo Sasaki, Shin Saito, Migaku Takahashi, Atsushi Hashimoto, Yuzo Sasaki, Gohei Kurokawa, Tomoyuki Maeda, Akihiko Takeo
  • Patent number: 8956560
    Abstract: In one embodiment, a method of manufacturing a mold includes: forming a first layer having an affinity to a second polymer on a substrate having an affinity to a first polymer; forming first and second openings in the first layer; filling a resist in the second openings and hardening the resist to obtain a hardened resist; and forming a second layer containing a block copolymer and causing it to self-assemble.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuaki Ootera, Yoshiyuki Kamata, Naoko Kihara, Yoshiaki Kawamonzen, Takeshi Okino, Ryosuke Yamamoto, Tomoyuki Maeda, Norikatsu Sasao, Akiko Yuzawa, Takuya Shimada, Hiroyuki Hieda
  • Publication number: 20140374380
    Abstract: A stamper of an embodiment includes: a base portion having a main surface; and a plurality of guides arranged on the main surface in mutually different first and second directions and serving as references of arrangement of a plurality of self-assembled dots. A distance between the guides in a third direction is within a range of an integer m1±0.05 times of a pitch of the plural self-assembled dots. The third direction corresponds to a third vector obtained by combining a first vector corresponding to the arrangement of the guides in the first direction and a second vector corresponding to the arrangement of the guides in the second direction. A distance between the plural guides in the first direction falls out of a range of an integer m2±0.15 times of the pitch of the plural self-assembled dots.
    Type: Application
    Filed: January 29, 2014
    Publication date: December 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masahiro KANAMARU, Yoshiyuki KAMATA, Ryosuke YAMAMOTO, Takeshi OKINO, Akira KIKITSU, Katsuya SUGAWARA, Yasuaki OOTERA, Tomoyuki MAEDA
  • Patent number: 8916053
    Abstract: A pattern forming method according to an embodiment includes: forming a pattern film on a first substrate, the pattern film having a concave-convex pattern, the pattern film being made of a material containing a first to-be-imprinted agent; forming a material film on a second substrate, the material film containing a second to-be-imprinted agent having a higher etching rate than an etching rate of the first to-be-imprinted agent; transferring the concave-convex pattern of the pattern film onto the material film by applying pressure between the first substrate and the second substrate, with the pattern film being positioned to face the material film, and by curing the second to-be-imprinted agent; detaching the first substrate from the pattern film; and removing the material film by etching, to leave the pattern film on the second substrate.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: December 23, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Kawamonzen, Yasuaki Ootera, Akiko Yuzawa, Naoko Kihara, Yoshiyuki Kamata, Hiroyuki Hieda, Norikatsu Sasao, Ryosuke Yamamoto, Takeshi Okino, Tomoyuki Maeda, Takuya Shimada
  • Patent number: 8835863
    Abstract: The radiation detector includes: a housing defining an enclosed space filled with a radiation detection gas; first and second electrodes opposing each other across the enclosed space; insulating materials covering surfaces of the first and second electrodes facing the enclosed space; and a voltage source for applying a voltage to the first and second electrodes, whereby a radiation sensor is formed. The radiation sensor is configured so that: in a radiation detection period, a predetermined voltage is applied between the first and second electrodes, and an electric charge is accumulated on the insulating materials by ions and/or electrons generated by ionization of the gas by incident radiation; and in a radiation measurement time, an electric discharge is caused by applying a reverse bias voltage from that applied to the first and second electrodes in the radiation detection period, and a firing voltage is measured.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: September 16, 2014
    Assignee: Panasonic Corporation
    Inventors: Yoichi Shintani, Ryuichi Murai, Mitsuhiro Murata, Tomoyuki Maeda
  • Patent number: 8837087
    Abstract: According to one embodiment, there is provided a thin magnetic film having a negative anisotropy of ?6×106 erg/cm3 or less and including, on at least a nonmagnetic substrate, at least one seed layer made of a metal or metal compound, a ruthenium underlayer for controlling the orientation of an immediately overlying layer, and a magnetic layer having negative anisotropy in the normal line direction perpendicular to a surface of the magnetic layer and mainly containing Co and Ir, wherein the additive element concentration of Ir in the magnetic layer is 10 (inclusive) to 45 (inclusive) at %.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: September 16, 2014
    Assignees: Kabushiki Kaisha Toshiba, Tohoku University, Showa Denko K.K.
    Inventors: Akihiko Takeo, Akira Kikitsu, Tomoyuki Maeda, Migaku Takahashi, Shin Saito, Ken Inoue, Gohei Kurokawa
  • Publication number: 20140139951
    Abstract: According to one embodiment, a perpendicular magnetic recording medium includes a nonmagnetic interlayer formed on a nonmagnetic substrate, an antiferromagnetic layer having a thickness of 2 to 30 nm, a first nonmagnetic underlayer having a thickness of 0.2 to 5 nm, a first bit patterned ferromagnetic layer, a first bit patterned nonmagnetic layer, and a second bit patterned ferromagnetic layer.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoyuki Maeda, Yousuke Isowaki, Akira Watanabe, Akihiko Takeo
  • Publication number: 20140139952
    Abstract: According to one embodiment, there is provided a thin magnetic film having a negative anisotropy of ?6×106 erg/cm3 or less and including, on at least a nonmagnetic substrate, at least one seed layer made of a metal or metal compound, a ruthenium underlayer for controlling the orientation of an immediately overlying layer, and a magnetic layer having negative anisotropy in the normal line direction perpendicular to a surface of the magnetic layer and mainly containing Co and Ir, wherein the additive element concentration of Ir in the magnetic layer is 10 (inclusive) to 45 (inclusive) at %.
    Type: Application
    Filed: July 19, 2013
    Publication date: May 22, 2014
    Inventors: Akihiko Takeo, Akira Kikitsu, Tomoyuki Maeda, Migaku Takahashi, Shin Saito, Ken Inoue, Gohei Kurokawa
  • Publication number: 20140127569
    Abstract: An object of the present invention is to eliminate deviation in the quality of a chromate film provided on a copper foil for a negative electrode current collector to eliminate fluctuation of electric capacity in a lithium ion secondary battery. To achieve the object, as the copper foil for a negative electrode current collector of a lithium ion secondary battery, a copper foil provided with a chromate film for a negative electrode current collector in which Cr(OH)3 constitutes 85 area % or more of the chromate film is employed. Further, the copper foil provided with a chromate film for a negative electrode current collector according to the present application is preferable to be that the apparent orientation number N of oxygen closest to chrome in the chromate film is 4.5 or more.
    Type: Application
    Filed: April 10, 2012
    Publication date: May 8, 2014
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Tomoyuki Maeda, Sakiko Tomonaga, Yasunori Tabira
  • Patent number: 8703308
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, a soft magnetic layer, a multilayered underlayer formed on the soft magnetic layer, and a continuous film type magnetic recording layer formed on the multilayered underlayer. The multilayered underlayer includes a first underlayer made of copper and containing crystal grains having a (100)-oriented, face-centered cubic lattice structure, a second underlayer formed on the first underlayer and made of copper and nitrogen, and a third underlayer formed into islands on the second underlayer. The continuous film type magnetic recording layer contains at least one element selected from Fe and Co and at least one element selected from Pt and Pd, has the L10 structure, and mainly contains (001)-oriented magnetic crystal grains.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: April 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomoyuki Maeda
  • Publication number: 20140106065
    Abstract: A method for manufacturing a patterned medium of an embodiment includes forming a perpendicular magnetic recording layer on a substrate, forming a mask on the perpendicular magnetic recording layer, milling the perpendicular magnetic recording layer, and depositing a protective layer on the perpendicular magnetic recording layer. The perpendicular magnetic recording layer includes a first element selected from Fe and Co and a second element selected from Pt and Pd, and has a hard magnetic alloy material having an L10 or L11 structure. A temperature of the substrate during the milling is higher than or equal to 250° C. and lower than or equal to 500° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: April 17, 2014
    Inventors: Tomoyuki MAEDA, Hiroyuki HIEDA, Masahiro KANAMARU, Katsuya SUGAWARA
  • Publication number: 20140104997
    Abstract: A magnetic recording medium is disclosed in which, on a non-magnetic substrate 1, at least an orientation control layer that controls orientation of a layer immediately above and a vertical magnetic layer in which an easy axis of magnetization is mainly vertically oriented with respect to the non-magnetic substrate are laminated. The orientation control layer includes an Ru-containing layer containing Ru or Ru alloy, and a diffusion prevention layer provided on the Ru-containing layer on the side of the vertical magnetic layer, is made of a material having a melting point of 1500° C. or higher and 4215° C. or lower and formed by a covalent bond or an ionic bond, and prevents thermal diffusion of Ru atoms of the Ru-containing layer.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 17, 2014
    Applicants: SHOWA DENKO K.K., TOHOKU UNIVERSITY, KABUSHIKI KAISHA TOSHIBA
    Inventors: Hisato SHIBATA, Ken INOUE, Tsubasa OKADA, Gohei KUROKAWA, Shin SAITO, Shintaro HINATA, Migaku TAKAHASHI, Tomoyuki MAEDA, Yosuke ISOWAKI, Akira KIKITSU
  • Publication number: 20140084177
    Abstract: The radiation detector includes: a housing defining an enclosed space filled with a radiation detection gas; first and second electrodes opposing each other across the enclosed space; insulating materials covering surfaces of the first and second electrodes facing the enclosed space; and a voltage source for applying a voltage to the first and second electrodes, whereby a radiation sensor is formed. The radiation sensor is configured so that: in a radiation detection period, a predetermined voltage is applied between the first and second electrodes, and an electric charge is accumulated on the insulating materials by ions and/or electrons generated by ionization of the gas by incident radiation; and in a radiation measurement time, an electric discharge is caused by applying a reverse bias voltage from that applied to the first and second electrodes in the radiation detection period, and a firing voltage is measured.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 27, 2014
    Applicant: Panasonic Corporation
    Inventors: Yoichi SHINTANI, Ryuichi MURAI, Mitsuhiro MURATA, Tomoyuki MAEDA
  • Publication number: 20140042013
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, an auxiliary layer formed on the substrate, and at least one perpendicular magnetic recording layer formed on the auxiliary layer. The perpendicular magnetic recording layer includes a magnetic dot pattern. The perpendicular magnetic recording layer is made of an alloy material containing one element selected from iron and cobalt, and one element selected from platinum and palladium. This alloy material has the L10 structure, and is (001)-oriented. The auxiliary layer includes a dot-like first region covered with the magnetic dot pattern, and a second region not covered with the magnetic dot pattern. The first region is made of a (100)-oriented nickel oxide. The second region contains nickel used in the first region as a main component.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomoyuki Maeda, Yousuke Isowaki, Akira Watanabe
  • Patent number: 8634153
    Abstract: According to one embodiment, a magnetic recording medium includes a substrate, an auxiliary layer formed on the substrate, and at least one perpendicular magnetic recording layer formed on the auxiliary layer. The perpendicular magnetic recording layer includes a magnetic dot pattern. The perpendicular magnetic recording layer is made of an alloy material containing one element selected from iron and cobalt, and one element selected from platinum and palladium. This alloy material has the L10 structure, and is (001)-oriented. The auxiliary layer includes a dot-like first region covered with the magnetic dot pattern, and a second region not covered with the magnetic dot pattern. The first region is made of one metal selected from (100)-oriented nickel and (100)-oriented iron. The second region contains an oxide of the metal used in the first region.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: January 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoyuki Maeda, Yousuke Isowaki, Akira Watanabe
  • Publication number: 20130306486
    Abstract: An object of the present invention is to provide a method for manufacturing a copper foil for a negative electrode current collector (specifically, copper foil for a negative electrode current collector of a lithium ion secondary battery) more excellent in discoloration resistance to improve charge/discharge cycle life of a secondary battery. To achieve the object, a method for manufacturing a copper foil for a negative electrode current collector of a secondary battery subjecting the copper foil to rust-proofing treatment, the method characterized in that the copper foil is rust-proofing treated with a chromate-treatment solution having pH in the range from 3.5 to 7.0 to form a chromate film on the surface of the copper foil is employed.
    Type: Application
    Filed: June 29, 2011
    Publication date: November 21, 2013
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Tomoyuki Maeda, Satoshi Torikai, Tetsuya Kaneko, Yusuke Ozaki, Sakiko Tomonaga
  • Publication number: 20130302635
    Abstract: An object of the present invention is to provide a copper foil excellent in softening resistance performance which reduces decrease in tensile strength after heat treatment at about 350° C. to 400° C. In order to achieve the object, a surface-treated copper foil provided with a rust-proofing treatment layer on both surfaces of a copper foil in which a rust-proofing treatment layer is constituted by zinc, and the either rust-proofing treatment layer is a zinc layer having zinc amount of 20 mg/m2 to 1,000 mg/m2; and the copper foil contains one or two or more of small amount elements selected from carbon, sulfur, chlorine and nitrogen, and a sum amount thereof is 100 ppm or more is adopted.
    Type: Application
    Filed: November 22, 2011
    Publication date: November 14, 2013
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Shinichi Obata, Shinya Hiraoka, Fumiaki Hosokoshi, Ayumu Tateoka, Hideaki Matsushima, Koichi Miyake, Sakiko Tomonaga, Tomoyuki Maeda
  • Publication number: 20130295407
    Abstract: An object of the present invention is to provide a copper foil excellent in softening resistance performance which reduces decrease in tensile strength after heat treatment at about 350° C. to 400° C. In order to achieve the object, a surface-treated copper foil provided with a rust-proofing treatment layer on both surfaces of a copper foil in which a rust-proofing treatment layer is constituted by zinc alloy, and the either rust-proofing treatment layer is a zinc alloy layer having zinc amount of 20 mg/m2 to 1,000 mg/m2; and the copper foil contains one or two or more of small amount elements selected from carbon, sulfur, chlorine and nitrogen, and a sum amount thereof is 100 ppm or more is adopted.
    Type: Application
    Filed: November 22, 2011
    Publication date: November 7, 2013
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Shinichi Obata, Shinya Hiraoka, Fumiaki Hosokoshi, Ayumu Tateoka, Hideaki Matsushima, Koichi Miyake, Sakiko Tomonaga, Tomoyuki Maeda
  • Publication number: 20130258523
    Abstract: A magnetic recording medium of an embodiment includes: a substrate; a nonmagnetic base layer disposed on the substrate; a perpendicular magnetic recording layer disposed on the nonmagnetic base layer, having a hard magnetic recording layer, a nonmagnetic intermediate layer, and a soft magnetic recording layer, and divided into mutually separated plural regions; and a protective layer disposed on the perpendicular magnetic recording layer. The hard magnetic recording layer has an easy magnetization axis directed to a stack direction of the hard magnetic recording layer. The nonmagnetic intermediate layer contains one of C, ZnO, a carbide of Si, Ti, Ta or W, and a nitride of Si, Ti, Ta or W.
    Type: Application
    Filed: December 21, 2012
    Publication date: October 3, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoyuki MAEDA, Hiroyuki HIEDA, Yousuke ISOWAKI, Takuya SHIMADA