Patents by Inventor Toni Weinschenk

Toni Weinschenk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12102670
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: October 1, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Phillip Mueller, Julia Leibold, Valentina Goldfinger
  • Patent number: 12103984
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 1, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12097248
    Abstract: A peptide consists of the amino acid sequence GVLPGLVGV (SEQ ID NO: 56) in the form of a pharmaceutically acceptable salt, in which the peptide has the ability to bind to an MHC class-I molecule and, when bound to MHC, is capable of being recognized by CD8 T cells. A composition contains a peptide consisting of the amino acid sequence GVLPGLVGV (SEQ ID NO: 56), an adjuvant, and a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: September 24, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Andrea Mahr, Jens Fritsche, Phillip Mueller, Anita Wiebe, Sarah Kutscher
  • Patent number: 12097249
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: September 24, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Phillip Mueller, Julia Leibold, Valentina Goldfinger
  • Patent number: 12084486
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: September 10, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Gisela Schimmack, Michael Roemer
  • Patent number: 12084522
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: September 10, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Publication number: 20240294602
    Abstract: A method of treating a patient who has hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), glioblastoma (GB), gastric cancer (GC), esophageal cancer, NSCLC, pancreatic cancer (PC), renal cell carcinoma (RCC), benign prostate hyperplasia (BPH), prostate cancer (PCA), ovarian cancer (OC), melanoma, breast cancer (BRCA), CLL, Merkel cell carcinoma (MCC), SCLC, Non-Hodgkin lymphoma (NHL), AML, gallbladder cancer and cholangiocarcinoma (GBC, CCC), urinary bladder cancer (UBC), and uterine cancer (UEC) includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide.
    Type: Application
    Filed: April 26, 2024
    Publication date: September 5, 2024
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Patent number: 12076379
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: September 3, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 12076381
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: September 3, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Phillip Mueller, Julia Leibold, Valentina Goldfinger
  • Patent number: 12076380
    Abstract: A peptide consists of the amino acid sequence ALVEQGFTV (SEQ ID NO: 5) in the form of a pharmaceutically acceptable salt, in which the peptide has the ability to bind to an MHC class-I molecule and, when bound to MHC, is capable of being recognized by CD8+ T cells. A composition contains a peptide consisting of the amino acid sequence ALVEQGFTV (SEQ ID NO: 5), an adjuvant, and a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: September 3, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Toni Weinschenk, Andrea Mahr, Jens Fritsche, Phillip Mueller, Anita Wiebe, Sarah Kutscher
  • Publication number: 20240285738
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: April 26, 2024
    Publication date: August 29, 2024
    Inventors: Andrea MAHR, Toni WEINSCHENK, Anita WIEBE, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Patent number: 12071458
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: August 27, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Helen Hoerzer, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12070491
    Abstract: A peptide consists of the amino acid sequence IYVTSIEQI (SEQ ID NO: 214) in the form of a pharmaceutically acceptable salt, in which the peptide has the ability to bind to an MHC class-I molecule and, when bound to MHC, is capable of being recognized by CD8+ T cells. A composition contains a peptide consisting of the amino acid sequence IYVTSIEQI (SEQ ID NO: 214), an adjuvant, and a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: August 27, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Toni Weinschenk, Andrea Mahr, Jens Fritsche, Phillip Mueller, Anita Wiebe, Sarah Kutscher
  • Publication number: 20240280583
    Abstract: The present invention relates to a method for the absolute quantification of naturally processed HLA-restricted cancer peptides, i.e. the determination of the copy number of peptide(s) as presented per cell. The present invention can not only be used for the development of antibody therapies or peptide vaccines, but is also highly valuable for a molecularly defined immuno-monitoring, and useful in the processes of identifying of new peptide antigens for immunotherapeutic strategies, such as respective vaccines, antibody-based therapies or adoptive T-cell transfer approaches in cancer, infectious and/or autoimmune diseases.
    Type: Application
    Filed: April 18, 2024
    Publication date: August 22, 2024
    Inventors: Toni WEINSCHENK, Julia LEIBOLD
  • Patent number: 12064465
    Abstract: A pharmaceutical composition contains an antibody or a fragment thereof specific for COL6A3 for the treatment of a cancer. A method of treating a cancer includes administering to a subject in need thereof the pharmaceutical composition. A kit includes a container that contains the pharmaceutical composition. A method of producing an antibody or a fragment thereof against a peptide or a MHC/peptide complex. A method for detecting a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a radioisotope and detecting a signal from the radioisotope in the subject. A method for treating a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a toxin.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: August 20, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Jens Fritsche, Toni Weinschenk, Steffen Walter, Peter Lewandrowski, Harpreet Singh
  • Patent number: 12065471
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: August 20, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Colette Song, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 12060406
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: August 13, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Lea Stevermann
  • Patent number: 12059458
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: August 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Colette Song
  • Patent number: 12060399
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: August 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Annika Sonntag, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Colette Song
  • Patent number: 12060400
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: August 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Franziska Hoffgaard, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh