Patents by Inventor Toni Zhang

Toni Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11621059
    Abstract: A method is provided for predicting conjunct polymer concentration in spent ionic liquid during a continuous hydrocarbon conversion process.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 4, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Toni Zhang Miao, Huping Luo, Hye-Kyung Cho Timken, Eddy Lee, Bong-Kyu Chang
  • Publication number: 20220036976
    Abstract: A method is provided for predicting conjunct polymer concentration in spent ionic liquid during a continuous hydrocarbon conversion process.
    Type: Application
    Filed: May 20, 2021
    Publication date: February 3, 2022
    Inventors: Toni Zhang MIAO, Huping LUO, Hye-Kyung Cho TIMKEN, Eddy LEE, Bong-Kyu CHANG
  • Patent number: 10684219
    Abstract: Hydrocarbons concentrations are determined in drilling cuttings samples by generating a model for predicting hydrocarbons concentrations. Methods include dividing multiple samples removed from drilling fluid into two one set analyzed using a retort, and another set analyzed using a handheld NIR spectrometer to obtain NIR diffuse reflectance data. PLS analysis is used to correlate the retort data with the diffuse reflectance data to generate a calibration model. The model is validated with samples having unknown hydrocarbons concentration. The model is used to predict the hydrocarbons concentration for samples removed from drilling fluid taken from the rig site using the spectrometer to obtain diffuse reflectance data. During measurements, each sample contains 0.1 to 10 wt % moisture and each sample is in a clear container pressed against the spectrometer window such that the IR source from the handheld device can pass to the drilled solids sample within the clear container without opening the clear container.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: June 16, 2020
    Assignee: Chevron U.S.A. Inc.
    Inventors: Toni Zhang Miao, John Bryan Trenery, Jr., Deyuan Kong, Roopa Kamath, Robert Neil Trotter, Cory James McDaniel
  • Publication number: 20200132597
    Abstract: Hydrocarbons concentrations are determined in drilling cuttings samples by generating a model for predicting hydrocarbons concentrations. Methods include dividing multiple samples removed from drilling fluid into two one set analyzed using a retort, and another set analyzed using a handheld NIR spectrometer to obtain NIR diffuse reflectance data. PLS analysis is used to correlate the retort data with the diffuse reflectance data to generate a calibration model. The model is validated with samples having unknown hydrocarbons concentration. The model is used to predict the hydrocarbons concentration for samples removed from drilling fluid taken from the rig site using the spectrometer to obtain diffuse reflectance data. During measurements, each sample contains 0.1 to 10 wt % moisture and each sample is in a clear container pressed against the spectrometer window such that the IR source from the handheld device can pass to the drilled solids sample within the clear container without opening the clear container.
    Type: Application
    Filed: October 30, 2018
    Publication date: April 30, 2020
    Applicant: Chevron U.S.A. Inc.
    Inventors: Toni Zhang MIAO, John Bryan TRENERY, JR., Deyuan KONG, Roopa KAMATH, Robert Neil TROTTER, Cory James MCDANIEL
  • Patent number: 10619758
    Abstract: Methods and apparatus are disclosed for automatically detecting the failure configuration of a pneumatic actuator. A control module is operatively coupled to the actuator, and the actuator is operatively coupled to a valve having a flow control member. When a number of pilot valves included in the control module is indicative of a double-acting actuator, the failure configuration of the actuator is determined based on the number of pilot valves. When the number of pilot valves included in the control module is indicative of a single-acting actuator, the failure configuration of the actuator is determined by comparing a first measurement value obtained in response to moving the flow control member in a first direction to a first position and a second measurement value obtained in response to moving the flow control member in a second direction opposite the first direction to a second position.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: April 14, 2020
    Assignee: EMERSON PROCESS MANAGEMENT, VALVE AUTOMATION, INC.
    Inventors: Toni Zhang, Edwin Schreuder, Harry Hobert, Eric Yuan
  • Patent number: 10113963
    Abstract: An integrated system for monitoring a chemical concentration in an ionic liquid, comprising: a. an online FTIR instrument with an ATR window; b. a sample conditioning station that removes light hydrocarbons and produces a degassed ionic liquid that is analyzed by FTIR; and c. a solvent flushing system that flows solvent across the ATR window. Also, a process for monitoring the chemical concentration, comprising: a. degassing the ionic liquid in the sample conditioning station; b. passing the degassed ionic liquid over an ATR window; c. periodically redirecting a flow of the degassed ionic liquid via a bypass line or an on-off valve that isolates the ATR window from the process unit that elutes the ionic liquid; and d. flowing a solvent and a purging gas over the ATR window during the periodically redirecting step c); and e. resuming the passing of the degassed ionic liquid over the ATR window.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 30, 2018
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Hye-Kyung Cho Timken, Toni Zhang Miao, Howard Steven Lacheen, Bi-Zeng Zhan
  • Patent number: 10094778
    Abstract: An integrated system for monitoring a chemical concentration in an ionic liquid, comprising: a. an online FTIR instrument with an ATR window; b. a sample conditioning station that removes light hydrocarbons and produces a degassed ionic liquid that is analyzed by FTIR; and c. a solvent flushing system that flows solvent across the ATR window. Also, a process for monitoring the chemical concentration, comprising: a. degassing the ionic liquid in the sample conditioning station; b. passing the degassed ionic liquid over an ATR window; c. periodically redirecting a flow of the degassed ionic liquid via a bypass line or an on-off valve that isolates the ATR window from the process unit that elutes the ionic liquid; and d. flowing a solvent and a purging gas over the ATR window during the periodically redirecting step c); and e. resuming the passing of the degassed ionic liquid over the ATR window.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: October 9, 2018
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Hye-Kyung Cho Timken, Toni Zhang Miao, Howard Steven Lacheen, Bi-Zeng Zhan
  • Patent number: 10041926
    Abstract: Disclosed is a method for generating a site specific model for predicting TPH concentration in soil. The method includes dividing a plurality of soil samples taken from a field site into two sets of samples. One set is analyzed using GC-FID, and the other set is analyzed using a handheld FTIR spectrometer with an ATR window to obtain FTIR-ATR absorbance data. Partial least squares regression analysis is used to correlate the GC-FID TPH concentration data with the absorbance data to generate a calibration model. The model is validated with soil samples having unknown TPH concentration. The model is used to predict the TPH concentration of soil samples taken from the field site analyzed using the handheld Fourier transform-infrared spectrometer to obtain FTIR-ATR absorbance data for the soil samples.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: August 7, 2018
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Toni Zhang Miao, Rachel Mohler, Deyuan Kong, Ajit Ramachandra Pradhan, Michael E. Moir, Thomas Hoelen
  • Publication number: 20180094746
    Abstract: Methods and apparatus are disclosed for automatically detecting the failure configuration of a pneumatic actuator. A control module is operatively coupled to the actuator, and the actuator is operatively coupled to a valve having a flow control member. When a number of pilot valves included in the control module is indicative of a double-acting actuator, the failure configuration of the actuator is determined based on the number of pilot valves. When the number of pilot valves included in the control module is indicative of a single-acting actuator, the failure configuration of the actuator is determined by comparing a first measurement value obtained in response to moving the flow control member in a first direction to a first position and a second measurement value obtained in response to moving the flow control member in a second direction opposite the first direction to a second position.
    Type: Application
    Filed: March 3, 2016
    Publication date: April 5, 2018
    Inventors: Toni Zhang, Edwin Schreuder, Harry Hobert, Eric Yuan
  • Publication number: 20180017540
    Abstract: Disclosed is a method for generating a site specific model for predicting TPH concentration in soil. The method includes dividing a plurality of soil samples taken from a field site into two sets of samples. One set is analyzed using GC-FID, and the other set is analyzed using a handheld FTIR spectrometer with an ATR window to obtain FTIR-ATR absorbance data. Partial least squares regression analysis is used to correlate the GC-FID TPH concentration data with the absorbance data to generate a calibration model. The model is validated with soil samples having unknown TPH concentration. The model is used to predict the TPH concentration of soil samples taken from the field site analyzed using the handheld Fourier transform-infrared spectrometer to obtain FTIR-ATR absorbance data for the soil samples.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Toni Zhang Miao, Rachel Mohler, Deyuan Kong, Ajit Ramachandra Pradhan, Michael E. Moir, Thomas Hoelen
  • Patent number: 9678002
    Abstract: A method of estimating the relative concentration of at least two components contained in a mixture of the components is disclosed. At least two mixtures are produced by combining the at least two components, each of the at least two mixtures having different concentrations of the at least two components. NIR mixture spectra are acquired from each of the at least two mixtures. The NIR component spectra and the NIR mixture spectra are input into a computer utilizing chemometrics software and the spectra are analyzed to produce a calibration model for each component and each of the mixture NIR spectra. NIR monitored spectra for a monitored mixture of the components having an unknown concentration of the components is acquired. The calibration models are applied to the NIR monitored spectra to thereby estimate the concentration of at least one of the components in the monitored mixture.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 13, 2017
    Assignee: Chevron U.S.A. Inc.
    Inventors: Toni Zhang Miao, Ajit Ramachandra Pradhan, Michael Edward Moir, Eddy Lee, Ian Phillip Benson
  • Publication number: 20160123872
    Abstract: A method of estimating the relative concentration of at least two components contained in a mixture of the components is disclosed. At least two mixtures are produced by combining the at least two components, each of the at least two mixtures having different concentrations of the at least two components. NIR mixture spectra are acquired from each of the at least two mixtures. The NIR component spectra and the NIR mixture spectra are input into a computer utilizing chemometrics software and the spectra are analyzed to produce a calibration model for each component and each of the mixture NIR spectra. NIR monitored spectra for a monitored mixture of the components having an unknown concentration of the components is acquired. The calibration models are applied to the NIR monitored spectra to thereby estimate the concentration of at least one of the components in the monitored mixture.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 5, 2016
    Applicant: Chevron U.S.A. Inc.
    Inventors: Toni Zhang Miao, Ajit Ramachandra Pradhan, Michael Edward Moir, Eddy Lee, Ian Phillip Benson
  • Patent number: 8956874
    Abstract: A method for determining corrosiveness of naphthenic acid in a crude oil feedstock is provided. The method includes the steps of providing a crude oil feedstock containing naphthenic acid; contacting the crude oil feedstock with iron for a period of time at a sufficient temperature for the iron to react with the naphthenic acid, forming iron salts. Under sufficiently high temperatures, at least a portion of the iron salts decompose to form ketone, which can be quantified. Measurements of the ketone can be used to correlate with the amount of iron lost from corrosion given a certain level of naphthenic acid present, giving a measure of the corrosivity of crude oil feedstock.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 17, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Monica Michele Barney, Toni Zhang Miao, Michael Tung-hai Cheng, Grzegorz Jan Kusinski
  • Publication number: 20130289320
    Abstract: A method for determining corrosiveness of naphthenic acid in a crude oil feedstock is provided. The method includes the steps of providing a crude oil feedstock containing naphthenic acid; contacting the crude oil feedstock with iron for a period of time at a sufficient temperature for the iron to react with the naphthenic acid, forming iron salts. Under sufficiently high temperatures, at least a portion of the iron salts decompose to form ketone, which can be quantified. Measurements of the ketone can be used to correlate with the amount of iron lost from corrosion given a certain level of naphthenic acid present, giving a measure of the corrosivity of crude oil feedstock.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: c/o Chevron Corporation
    Inventors: Monica Michele Barney, Toni Zhang Miao, Michael Tung-hai Cheng, Grzegorz Jan Kusinski