Patents by Inventor Tony Hung

Tony Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11724237
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: August 15, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Publication number: 20220274072
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Patent number: 11358105
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: June 14, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Publication number: 20210197146
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 1, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Patent number: 10962563
    Abstract: Methods and systems are provided for measuring a velocity of a droplet passing through a microfluidic channel.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: March 30, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Aaron Weber, Tony Hung, Sepehr Kiani
  • Patent number: 10919008
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: February 16, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Patent number: 10730045
    Abstract: The present invention generally pertains to a system for performing droplet inflation, and methods and kits comprising the same. The system comprises at least one microfluidic channel comprising one or more droplets flowing therein, one or more fluid reservoirs, one or more inflators, one or more inflator nozzles, and at least one mechanism for disrupting an interface between a droplet and a fluid. The present invention provides for the inflation of a relatively controlled volume of fluid into a droplet resulting in an increase in the volume of the droplet relative to its volume prior to inflation and, accordingly, dilution of the concentration of species, if any, previously present and emulsified in the droplet.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: August 4, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Tony Hung, Adnan Esmail, Sepehr Kiani
  • Patent number: 10633701
    Abstract: The present invention relates to systems and methods for sequencing nucleic acids, including sequencing nucleic acids in fluidic droplets. In one set of embodiments, the method employs sequencing by hybridization using droplets such as microfluidic droplets. In some embodiments, droplets are formed which include a target nucleic acid, a nucleic acid probe, and at least one identification element, such as a fluorescent particle. The nucleic acid probes that hybridize to the target nucleic acid are determined, in some instances, by determining the at least one identification element. The nucleic acid probes that hybridize to the target nucleic acid may be used to determine the sequence of the target nucleic acid. In certain instances, the microfluidic droplets are provided with reagents that modify the nucleic acid probe. In some cases, a droplet, such as those described above, is deformed such that the components of the droplets individually pass a target area.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: April 28, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti, Michael P. Weiner, Adam R. Abate, Tony Hung
  • Patent number: 10589274
    Abstract: Methods and systems for manipulating drops in microfluidic channels are provided.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: March 17, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Sepehr Kiani, Joshua Blouwolff, Adnan Esmail, Jason Hung, Tony Hung, Adam R. Abate, Scott Powers, Pascaline Mary
  • Patent number: 10569268
    Abstract: The present invention generally pertains to a system for performing injection of multiple substantially controlled volumes into or out of a droplet, and methods and kits comprising the same. The system of the present invention comprises at least one microfluidic channel, one or more injection channels, an injection inlet associated with each of the one or more injection channels, and a mechanism for disrupting an interface between a droplet and a fluid and/or emulsion, wherein the at least one microfluidic channel comprises one or more droplets are flowing therein, and wherein each of the one or more injection channels comprises at least one fluid and/or emulsion therein.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 25, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Adam Abate, Sepehr Kiani, Tony Hung, Pascaline Mary, Adnan Moez Esmail
  • Patent number: 10343167
    Abstract: The present invention provides a microfluidic system, method and kit for performing assays. The system may comprise a microfluidic device and a detector, wherein the assay yields results that may be read by a detector and analyzed by the system. The assay may comprise one or more chemical or biological reaction against, or performed on, a sample or multiple samples. The sample(s) may become larger and/or smaller during the performance of the assay. The sample(s) may be present within a vehicle, or on a carrier within a vehicle, in the microfluidic device, and wherein the vehicle may become larger and/or smaller during the performance of the assay. The assay may be a cascading assay comprising a series of multiple assays, wherein each assay may be the same or different, and wherein each assay in the series of multiple assays may further comprise one or more process or step.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 9, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Adnan Esmail, Tal Raz, John Healy, Tony Hung, Sepehr Kiani, Pascaline Mary
  • Publication number: 20190146002
    Abstract: Methods and systems are provided for measuring a velocity of a droplet passing through a microfluidic channel.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Inventors: Aaron WEBER, Tony HUNG, Sepehr KIANI
  • Publication number: 20190091685
    Abstract: The present invention generally pertains to a system for performing droplet inflation, and methods and kits comprising the same. The system comprises at least one microfluidic channel comprising one or more droplets flowing therein, one or more fluid reservoirs, one or more inflators, one or more inflator nozzles, and at least one mechanism for disrupting an interface between a droplet and a fluid. The present invention provides for the inflation of a relatively controlled volume of fluid into a droplet resulting in an increase in the volume of the droplet relative to its volume prior to inflation and, accordingly, dilution of the concentration of species, if any, previously present and emulsified in the droplet.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 28, 2019
    Inventors: Tony HUNG, Adnan ESMAIL, Sepehr KIANI
  • Patent number: 10215771
    Abstract: Methods and systems are provided for measuring a velocity of a droplet passing through a microfluidic channel.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: February 26, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Aaron Weber, Tony Hung, Sepehr Kiani
  • Publication number: 20180369818
    Abstract: Methods and systems for manipulating drops in microfluidic channels are provided.
    Type: Application
    Filed: May 22, 2018
    Publication date: December 27, 2018
    Inventors: Sepehr KIANI, Joshua BLOUWOLFF, Adnan ESMAIL, Jason HUNG, Tony HUNG, Adam R. ABATE, Scott POWERS, Pascaline MARY
  • Patent number: 10159977
    Abstract: The present invention generally pertains to a system for performing droplet inflation, and methods and kits comprising the same. The system comprises at least one microfluidic channel comprising one or more droplets flowing therein, one or more fluid reservoirs, one or more inflators, one or more inflator nozzles, and at least one mechanism for disrupting an interface between a droplet and a fluid. The present invention provides for the inflation of a relatively controlled volume of fluid into a droplet resulting in an increase in the volume of the droplet relative to its volume prior to inflation and, accordingly, dilution of the concentration of species, if any, previously present and emulsified in the droplet.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: December 25, 2018
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Tony Hung, Adnan Esmail, Sepehr Kiani
  • Patent number: 10130950
    Abstract: Systems and methods for confining droplets within a microfluidic channel as well as systems and methods for packing droplets are provided. More specifically, a system and method are provided for controlling the introduction and removal of oil into a microfluidic channel in order to control where drops are allowed to flow within that channel.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: November 20, 2018
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Tony Hung, Sepehr Kiani, Scott Powers, Adnan Esmail
  • Patent number: 10022721
    Abstract: Methods and systems for manipulating drops in microfluidic channels are provided.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: July 17, 2018
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Sepehr Kiani, Joshua Blouwolff, Adnan Esmail, Jason Hung, Tony Hung, Adam R. Abate, Scott Powers, Pascaline Mary
  • Patent number: 10012592
    Abstract: The present invention generally pertains to methods and kits for managing the variation in spectroscopic intensity measurements through the use of a reference component. The reference component may comprise a reference spectroscopic substance and may be contained together with a sample of interest in a sample to be tested, wherein the sample of interest may comprise a sample spectroscopic substance. Each sample to be tested may be uniquely identified and, hence, “barcoded” by combinations of different colors and concentrations of spectroscopic substances, contained therein.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: July 3, 2018
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Adam Abate, John Lawrence Emhoff, Tony Hung, Adnan Moez Esmail, Sepehr Kiani, Pascaline Mary
  • Publication number: 20180078933
    Abstract: The present invention generally pertains to a system for performing injection of multiple substantially controlled volumes into or out of a droplet, and methods and kits comprising the same. The system of the present invention comprises at least one microfluidic channel, one or more injection channels, an injection inlet associated with each of the one or more injection channels, and a mechanism for disrupting an interface between a droplet and a fluid and/or emulsion, wherein the at least one microfluidic channel comprises one or more droplets are flowing therein, and wherein each of the one or more injection channels comprises at least one fluid and/or emulsion therein.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Inventors: Adam ABATE, Sepehr KIANI, Tony HUNG, Pascaline MARY, Adnan Moez ESMAIL