Patents by Inventor Tony K. Quach

Tony K. Quach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6971160
    Abstract: A hybrid integrated circuit fabrication method in which an insulating substrate member and its metallic substrate carrier are made to be mating with precision through use of computer controlled machining performed on each member. A combination of disclosed specifically tailored software and commercially available software are used in the method to generate code for controlling a precision milling machine during the fabrication of substrate and substrate carrier members. The method for precision mating of substrate and substrate carrier enable disposition of a precision recess in the substrate carrier and the location of recess pillars and pedestals (the latter being for integrated circuit die mounting use) at any carrier recess location desirable for electrical, thermal or physical strength reasons.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: December 6, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Ryan J. Welch, Tony K. Quach
  • Patent number: 6884717
    Abstract: An etching based semiconductor wafer thinning arrangement usable as an improved alternative to the usual grinding and polishing wafer thinning. The thinned wafer includes a structurally enhancing wafer backside grid array of original wafer thickness semiconductor material with grid cells surrounding individual thinned wafer areas and serving to improve the strength and physical rigidity characteristics of the thinned wafer. Preferably this grid array is supplemented with an additional, wafer periphery-located, backside ring of semiconductor material also of original wafer thickness. Ability to avoid a wafer front side mounting during thinning accomplishment, fast etching, reduced wafer breakage, enhanced wafer strength and improved wafer handling achieved with the disclosed thinning arrangement all contribute to achieved advantages over conventional wafer thinning.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: April 26, 2005
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Gregory C. Desalvo, Tony K. Quach, John L. Ebel, Anders P. Walker, Paul D. Cassity
  • Patent number: 6653214
    Abstract: An integrated circuit substrate via-hole fabrication arrangement providing for accurate determination of via-hole size and via-hole registration through use of a calibrated pattern formed into the integrated circuit substrate during portions of the normal circuit fabrication process. Initiation of the via-hole and fabrication of the calibrated pattern from one surface, such as the front side, of the integrated circuit wafer and completion of the via-hole from the opposite surface of the wafer are contemplated. The calibrated pattern may be one of several possible physical configurations and of selected dimensions usable with the process, materials and circuitry of the device being fabricated. Use of the invention in fabricating ground conductor-connected via conductors for gigahertz radio frequency-capable integrated circuits of the monolithic or mixed hybrid with monolithic type and having a ground plane element is contemplated.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: November 25, 2003
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Tony K. Quach, G. David Via, James S. Sewell, Christopher A. Bozada, Gregory C. DeSalvo, Ross W. Dettmer, John L. Ebel, James K. Gillespie, Thomas Jenkins, Kenichi Nakano
  • Patent number: 6222210
    Abstract: An enhancement mode periodic table group III-IV semiconductor field-effect transistor complementary pair device is disclosed. The disclosed complementary pair include single metallization for ohmic and Schottky barrier contacts, a permanent non photosensitive passivation layer (a layer which has also been used for masking purposes during fabrication of the device) and gate elements of small dimension and shaped cross section to provide desirable microwave spectrum electrical characteristics. The complementary pair of the invention is fabricated from undoped semiconductor materials disposed in a layered wafer structure and selectively doped by ion implantation to achieve both the p-channel and n-channel transistors. The semiconductor materials may include two, one or zero buffer layers in their layer structure. The disclosed complementary pair is of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: April 24, 2001
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Charles L. A. Cerny, Christopher A. Bozada, Gregory C. DeSalvo, John L. Ebel, Ross W. Dettmer, James K. Gillespie, Charles K. Havasy, Thomas J. Jenkins, Kenichi Nakano, Carl I. Pettiford, Tony K. Quach, James S. Sewell, G. David Via
  • Patent number: 6198116
    Abstract: A method for fabricating a periodic table group III-IV metal semiconductor metal field-effect enhancement mode complementary transistor pair device is described, a device typically made of gallium arsenide materials. The disclosed fabrication uses initially undoped semiconductor materials, single metallization for ohmic and Schottky barrier contacts, employs a non-alloyed ohmic contact semiconductor layer and includes an inorganic dielectric material layer providing non photosensitive masking at plural points in the fabrication sequence. The invention uses selective ion implantations, and a combined optical and electron beam lithographic process, the latter in small dimension gate areas. These attributes are combined to provide a field-effect transistor complementary pair of reduced fabrication cost, low electrical energy operating requirements increased dimensional accuracy and current state of the art electrical performance. Fabricated device characteristics are also disclosed.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: March 6, 2001
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Charles L. A. Cerny, Christopher A. Bozada, Gregory C. DeSalvo, John L. Ebel, Ross W. Dettmer, James K. Gillespie, Charles K. Havasy, Thomas J. Jenkins, Kenichi Nakano, Carl I. Pettiford, Tony K. Quach, James S. Sewell, G. David Via
  • Patent number: 6066865
    Abstract: An enhancement mode periodic table group III-IV semiconductor field-effect transistor device is disclosed. The disclosed transistor includes single metallization for ohmic and Schottky barrier contacts, a permanent non photosensitive passivation layer (a layer which has also been used for masking purposes during fabrication of the transistor) and a gate element of small dimension and shaped cross section as needed to provide desirable microwave spectrum electrical characteristics. The transistor of the invention is fabricated from undoped semiconductor materials disposed in a layered wafer structure and selectively doped by ion implantation to achieve either a p-channel or an n-channel transistor. The semiconductor materials may include two, one or zero buffer layers in their layer structure. The disclosed transistor is of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: May 23, 2000
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Charles L. A. Cerny, Christopher A. Bozada, Gregory C. DeSalvo, John L. Ebel, Ross W. Dettmer, James K. Gillespie, Charles K. Havasy, Thomas J. Jenkins, Kenichi Nakano, Carl I. Pettiford, Tony K. Quach, James S. Sewell, G. David Via
  • Patent number: 6020226
    Abstract: A method for fabricating an enhancement mode periodic table group III-IV metal semiconductor metal field-effect transistor is described. The disclosed fabrication arrangement uses single metallization for ohmic and Schottky barrier contacts, employs initially undoped semiconductor materials--materials selectively doped in a disclosed processing step, employs a non-alloyed ohmic contact semiconductor layer and includes an inorganic dielectric material layer providing non photosensitive masking at plural points in the fabrication sequence along with permanent surface passivation. The invention uses a combined optical and electron beam lithographic process, the latter in small dimension gate areas. These attributes are combined to provide a field-effect transistor capable of microwave frequency use, of reduced fabrication cost, low electrical energy operating requirements increased dimensional accuracy and state of the art electrical performance. Fabricated device characteristics are also disclosed.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: February 1, 2000
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Charles L. A. Cerny, Christopher A. Bozada, Gregory C. DeSalvo, John L. Ebel, Ross W. Dettmer, James K. Gillespie, Charles K. Havasy, Thomas J. Jenkins, Kenichi Nakano, Carl I. Pettiford, Tony K. Quach, James S. Sewell, G. David Via
  • Patent number: 6004881
    Abstract: A room temperature wet chemical digital etching technique for, gallium arsenide or other semiconductor material. Hydrogen peroxide and an acid are used in a two step etching cycle to remove the gallium arsenide in approximately 15 .ANG. limited increments. In the first step of the cycle, gallium arsenide is oxidized by, for example, 30% hydrogen peroxide to form an oxide layer that is diffusion limited to a thickness of, for example, 14-17 .ANG. for time periods from 15 seconds to 120 seconds. The second step of the cycle removes this oxide layer with an acid that does not attack unoxidized gallium arsenide. These steps are repeated in succession using new reactant materials and cleaning after each reactant (to prevent reactant contamination) until the desired etch depth is obtained. Experimental results are presented demonstrating the etch rate and process invariability with respect to hydrogen peroxide and acid exposure times.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: December 21, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Christopher A. Bozada, Gregory C. DeSalvo, John L. Ebel, Charles L.A. Cerny, Ross W. Dettmer, James K. Gillespie, Charles K. Havasy, Thomas J. Jenkins, Kenichi Nakano, Carl I. Pettiford, Tony K. Quach, James S. Sewell, G. David Via
  • Patent number: 5976920
    Abstract: A method for fabricating a periodic table group III-IV HEMT/pHEMT field-effect transistor device. The disclosed fabrication arrangement uses a single metalization for ohmic and Schottky barrier contacts, employs selective etching with a permanent etch stop layer, employs a non-alloyed ohmic contact semiconductor layer and includes a permanent non-photosensitive secondary mask element. The invention includes provisions for both an all optical lithographic process and a combined optical and electron beam lithographic process These concepts are combined to provide a field-effect transistor device of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: November 2, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Kenichi Nakano, Christopher A. Bozada, Tony K. Quach, Gregory C. DeSalvo, G. David Via, Ross W. Dettmer, Charles K. Havasy, James S. Sewell, John L. Ebel, James K. Gillespie
  • Patent number: 5940694
    Abstract: A method for fabricating a periodic table group III-IV field-effect transistor device is described. The disclosed fabrication arrangement uses a single metallization for ohmic and Schottky barrier contacts, employs selective etching with a permanent etch stop layer, employs a non-alloyed ohmic contact semiconductor layer and includes a permanent semiconductor material secondary mask element, a mask element which can be grown epitaxially during wafer fabrication. The invention includes provisions for both an all optical lithographic process and a combined optical and electron beam lithographic process These concepts are combined to provide a field-effect transistor device of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: August 17, 1999
    Inventors: Christopher A. Bozada, Tony K. Quach, Kenichi Nakano, Gregory C. DeSalvo, G. David Via, Ross W. Dettmer, Charles K. Havasy, James S. Sewell, John L. Ebel, James K. Gillespie
  • Patent number: 5869364
    Abstract: A method for fabricating a periodic table group III-IV metal semiconductor metal field-effect transistor device is described. The disclosed fabrication arrangement uses a single metalization for ohmic and Schottky barrier contacts, employs selective etching with a permanent etch stop layer, employs a non-alloyed ohmic contact semiconductor layer and includes a permanent non photosensitive secondary mask element. The invention includes provisions for both an all optical lithographic process and a combined optical and electron beam lithographic process. These concepts are combined to provide a field-effect transistor device of reduced fabrication cost, increased dimensional accuracy and state-of-the-art electrical performance.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: February 9, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Kenichi Nakano, Christopher A. Bozada, Tony K. Quach, Gregory C. DeSalvo, G. David Via, Ross W. Dettmer, Charles K. Havasy, James S. Sewell, John L. Ebel, James K. Gillespie
  • Patent number: 5796131
    Abstract: A periodic table group III-IV metal semiconductor metal field-effect transistor device is described. The disclosed device includes single metalization for ohmic and Schottky barrier contacts, an elective permanent etch stop layer, a non-alloyed ohmic contact semiconductor layer and a permanent non photosensitive secondary mask element. The invention may be achieved with one of an all optical lithographic process and a combined optical and electron beam lithographic process The disclosed field-effect transistor device is of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: August 18, 1998
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Kenichi Nakano, Christopher A. Bozada, Tony K. Quach, Gregory C. DeSalvo, G. David Via, Ross W. Dettmer, Charles K. Havasy, James S. Sewell, John L. Ebel, James K. Gillespie
  • Patent number: 5698870
    Abstract: A periodic table group III-IV HEMT/PHEMT field-effect transistor device and its fabrication is described. The disclosed fabrication arrangement uses a single metallization for ohmic and Schottky barrier contacts, employs selective etching with a permanent etch stop layer, employs a non-alloyed ohmic contact semiconductor layer and includes a permanent non photoresponsive secondary mask element affording several practical advantages during fabrication and in the completed transistor. The invention includes provisions for both an all-optical lithographic fabrication process and a combined optical and electron beam lithographic process. These concepts are combined to provide a field-effect transistor device of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: December 16, 1997
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Kenichi Nakano, Christopher A. Bozada, Tony K. Quach, Gregory C. DeSalvo, G. David Via, Ross W. Dettmer, Charles K. Havasy, James S. Sewell, John L. Ebel, James K. Gillespie
  • Patent number: 5698900
    Abstract: A periodic table group III-IV field-effect transistor device is described. The disclosed device uses a single metalization for ohmic and Schottky barrier contacts, permanent plural etch stop layers, employs a non-alloyed ohmic connection semiconductor layer and includes a permanent semiconductor material-comprised secondary mask element, a mask element which can be grown epitaxially during wafer fabrication to perform useful functions in both the device processing and device utilization environments. The device of the invention may be achieved with both an all optical lithographic process and a combined optical and electron beam lithographic process The disclosed device provides a field-effect transistor of reduced fabrication cost, increased dimensional accuracy and state of the art electrical performance.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: December 16, 1997
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Christopher A. Bozada, Tony K. Quach, Kenichi Nakano, Gregory C. DeSalvo, G. David Via, Ross W. Dettmer, Charles K. Havasy, James S. Sewell, John L. Ebel, James K. Gillespie
  • Patent number: 5336930
    Abstract: An additional layer of electrically insulating material is added to the backside of thin wafers, especially wafers made from brittle semiconductor material such as gallium arsenide and comprising integrated circuits of, for example, the microwave monolithic integrated circuit type. The added layer of material is used to add mechanical rigidity and abuse tolerance to the otherwise quite fragile wafer, and is especially useful during probe testing of circuit die located on these fragile wafers and in the steps preceding and following probe testing. Preferably, the added layer is made from silicon nitride or silicon dioxide, or one of several diamond-related materials. The former materials provide the advantage of ready availability, low cost, and possibly already accomplished use in the wafer's fabrication; the latter diamond-related materials have the significant advantages of notable hardness, along with desirable heat conducting properties.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 9, 1994
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Tony K. Quach