Patents by Inventor Tony Kowalczyk

Tony Kowalczyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7171064
    Abstract: A thermo-optic switch is operated in a novel near-impulse mode in which the drive pulse width is shorter than twice the diffusion time of the switch. The drive pulse width is less than the rise time of the steady-state optical response and also less than the rise time of the deflection efficiency response to the applied drive pulse. The drive pulse can further include a sustaining segment following the initial short pulse segment, if it is desired to maintain the switch in an ON state for a longer period of time. A number of additional techniques are described for further reducing the response time of the switch. An array of thermo-optic switches operated in this manner can form a display which, due to the fast individual switch rise times, can operate at an overall fast refresh rate.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: January 30, 2007
    Inventors: Michael J. Brinkman, William K. Bischel, Tony Kowalczyk, David R. Main, Lee L. Huang
  • Publication number: 20060198579
    Abstract: Optical apparatus with improved center wavelength temperature stability. In an embodiment, an AWG has a plurality of slots inserted along the optical paths. The slots contain one or more compensation materials which collectively correct for an order Q temperature dependency of the AWG base material. Q>=2 or the number of compensation materials is at least 2 or both.
    Type: Application
    Filed: March 4, 2005
    Publication date: September 7, 2006
    Applicant: Gemfire Corporation
    Inventors: Hindrick Bulthuis, Tony Kowalczyk, Michael Jubber
  • Publication number: 20030206683
    Abstract: A thermo-optic switch is operated in a novel near-impulse mode in which the drive pulse width is shorter than twice the diffusion time of the switch. The drive pulse width is less than the rise time of the steady-state optical response and also less than the rise time of the deflection efficiency response to the applied drive pulse. The drive pulse can further include a sustaining segment following the initial short pulse segment, if it is desired to maintain the switch in an ON state for a longer period of time. A number of additional techniques are described for further reducing the response time of the switch. An array of thermo-optic switches operated in this manner can form a display which, due to the fast individual switch rise times, can operate at an overall fast refresh rate.
    Type: Application
    Filed: May 5, 2003
    Publication date: November 6, 2003
    Applicant: Gemfire Corporation
    Inventors: Michael J. Brinkman, William K. Bischel, Tony Kowalczyk, David R. Main, Lee L. Huang
  • Publication number: 20020037129
    Abstract: A thermo-optic switch is operated in a novel near-impulse mode in which the drive pulse width is shorter than twice the diffusion time of the switch. The drive pulse width is less than the rise time of the steady-state optical response and also less than the rise time-of the deflection efficiency response to the applied drive pulse. The drive pulse can further include a sustaining segment following the initial short pulse segment, if it is desired to maintain the switch in an ON state for a longer period of time. A number of additional techniques are described for further reducing the response time of the switch. An array of thermo-optic switches operated in this manner can form a display which, due to the fast individual switch rise times, can operate at an overall fast refresh rate.
    Type: Application
    Filed: June 29, 2001
    Publication date: March 28, 2002
    Applicant: Gemfire Corporation
    Inventors: Michael J. Brinkman, William K. Bischel, Tony Kowalczyk, Lee L. Huang
  • Patent number: 6351578
    Abstract: A thermo-optic switch is operated in a novel near-impulse mode in which the drive pulse width is shorter than twice the diffusion time of the switch. The drive pulse width is less than the rise time of the steady-state optical response and also less than the rise time of the deflection efficiency response to the applied drive pulse. The drive pulse can further include a sustaining segment following the initial short pulse segment, if it is desired to maintain the switch in an ON state for a longer period of time. A number of additional techniques are described for further reducing the response time of the switch. An array of thermo-optic switches operated in this manner can form a display which, due to the fast individual switch rise times, can operate at an overall fast refresh rate.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: February 26, 2002
    Assignee: Gemfire Corporation
    Inventors: Michael J. Brinkman, William K. Bischel, Tony Kowalczyk, David R. Main, Lee L. Huang