Patents by Inventor Tony M. Lindenberg

Tony M. Lindenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402426
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3D interconnect (3DI) structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 2, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Patent number: 11094684
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 17, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Publication number: 20210041495
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3D interconnect (3DI) structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Patent number: 10852344
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3DI structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 1, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Publication number: 20190341378
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Patent number: 10424618
    Abstract: An array of cross point memory cells comprises spaced elevationally inner first lines, spaced elevationally outer second lines which cross the first lines, and a multi-resistive state region elevationally between the first and second lines where such cross. Individual of the multi-resistive state regions comprise elevationally outer multi-resistive state material and elevationally inner multi-resistive state material that are electrically coupled to one another. The inner multi-resistive state material has opposing edges in a vertical cross-section. The outer multi-resistive state material has opposing edges in the vertical cross-section that are laterally offset relative to the opposing edges of the inner multi-resistive state material in the vertical cross-section. Methods are also disclosed.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 24, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Stephen W. Russell, Tony M. Lindenberg
  • Patent number: 10403618
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Patent number: 10332934
    Abstract: Some embodiments include a memory array which has a first series of access/sense lines extending along a first direction, and a second series of access/sense lines over the first series of access/sense lines and extending along a second direction which crosses the first direction. Memory cells are vertically between the first and second series of access/sense lines. Each memory cell is uniquely addressed by a combination of an access/sense line from the first series and an access/sense line from the second series. Resistance-increasing material is adjacent to and coextensive with the access/sense lines of one of the first and second series, and is between the adjacent access/sense lines and programmable material of the memory cells. Some embodiments include methods of forming memory arrays.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: June 25, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Tony M. Lindenberg
  • Publication number: 20190178933
    Abstract: A testing probe apparatus for testing die. The testing probe may include a probe interface and a carrier for supporting at least one die comprising 3DI structures. The probe interface may be positionable on a first side of the at least one die and include a voltage source and at least one first inductor operably coupled to the voltage source. A voltage sensor and at least one second inductor coupled to the voltage sensor may be disposed on a second opposing side of the at least one die. The voltage source of the probe interface may be configured to inductively cause a voltage within the 3DI structures of the at least one die via the at least one first inductor. The voltage sensor may be configured to sense a voltage within the at least one 3DI structure via the at least one second inductor. Related systems and methods are also disclosed.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Tony M. Lindenberg, Kurt J. Bossart, Jonathan S. Hacker, Chandra S. Tiwari
  • Publication number: 20190088637
    Abstract: A semiconductor device assembly that includes a first side of a semiconductor device supported on a substrate to permit the processing of a second side of the semiconductor device. A filler material deposited on the semiconductor device supports the semiconductor device on the substrate. The filler material does not adhere to the semiconductor device or the substrate. Alternatively, the filler material may be deposited on the substrate. Instead of a filler material, the substrate may include a topography configured to support the semiconductor device. Adhesive applied between an outer edge of the first side of the semiconductor and the substrate bonds the outer edge of the semiconductor device to the substrate to form a semiconductor device assembly. A second side of the semiconductor device may then be processed and the outer edge of the semiconductor device may be cut off to release the semiconductor device from the assembly.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Inventors: Chandra S. Tiwari, Tony M. Lindenberg, Jonathan S. Hacker, Christopher J. Gambee, Kurt J. Bossart
  • Publication number: 20180138238
    Abstract: Some embodiments include a memory array which has a first series of access/sense lines extending along a first direction, and a second series of access/sense lines over the first series of access/sense lines and extending along a second direction which crosses the first direction. Memory cells are vertically between the first and second series of access/sense lines. Each memory cell is uniquely addressed by a combination of an access/sense line from the first series and an access/sense line from the second series. Resistance-increasing material is adjacent to and coextensive with the access/sense lines of one of the first and second series, and is between the adjacent access/sense lines and programmable material of the memory cells. Some embodiments include methods of forming memory arrays.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 17, 2018
    Inventor: Tony M. Lindenberg
  • Publication number: 20180138239
    Abstract: An array of cross point memory cells comprises spaced elevationally inner first lines, spaced elevationally outer second lines which cross the first lines, and a multi-resistive state region elevationally between the first and second lines where such cross. Individual of the multi-resistive state regions comprise elevationally outer multi-resistive state material and elevationally inner multi-resistive state material that are electrically coupled to one another. The inner multi-resistive state material has opposing edges in a vertical cross-section. The outer multi-resistive state material has opposing edges in the vertical cross-section that are laterally offset relative to the opposing edges of the inner multi-resistive state material in the vertical cross-section. Methods are also disclosed.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: Fabio Pellizzer, Stephen W. Russell, Tony M. Lindenberg
  • Patent number: 9899451
    Abstract: An array of cross point memory cells comprises spaced elevationally inner first lines, spaced elevationally outer second lines which cross the first lines, and a multi-resistive state region elevationally between the first and second lines where such cross. Individual of the multi-resistive state regions comprise elevationally outer multi-resistive state material and elevationally inner multi-resistive state material that are electrically coupled to one another. The inner multi-resistive state material has opposing edges in a vertical cross-section. The outer multi-resistive state material has opposing edges in the vertical cross-section that are laterally offset relative to the opposing edges of the inner multi-resistive state material in the vertical cross-section. Methods are also disclosed.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: February 20, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Stephen W. Russell, Tony M. Lindenberg
  • Patent number: 9881971
    Abstract: Some embodiments include a memory array which has a first series of access/sense lines extending along a first direction, and a second series of access/sense lines over the first series of access/sense lines and extending along a second direction which crosses the first direction. Memory cells are vertically between the first and second series of access/sense lines. Each memory cell is uniquely addressed by a combination of an access/sense line from the first series and an access/sense line from the second series. Resistance-increasing material is adjacent to and coextensive with the access/sense lines of one of the first and second series, and is between the adjacent access/sense lines and programmable material of the memory cells. Some embodiments include methods of forming memory arrays.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: January 30, 2018
    Assignee: Micron Technology, Inc.
    Inventor: Tony M. Lindenberg
  • Publication number: 20160260777
    Abstract: An array of cross point memory cells comprises spaced elevationally inner first lines, spaced elevationally outer second lines which cross the first lines, and a multi-resistive state region elevationally between the first and second lines where such cross. Individual of the multi-resistive state regions comprise elevationally outer multi-resistive state material and elevationally inner multi-resistive state material that are electrically coupled to one another. The inner multi-resistive state material has opposing edges in a vertical cross-section. The outer multi-resistive state material has opposing edges in the vertical cross-section that are laterally offset relative to the opposing edges of the inner multi-resistive state material in the vertical cross-section. Methods are also disclosed.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Inventors: Fabio Pellizzer, Stephen W. Russell, Tony M. Lindenberg
  • Patent number: 9401285
    Abstract: Systems and methods for chemical mechanical planarization topography control via implants are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes increasing the content of at least one of silicon or germanium in at least select regions of a dielectric material thereby reducing the material removal rate for a chemical mechanical polishing (CMP) process at the select regions, and removing material from the dielectric material using the CMP process. In another embodiment, a method of manufacturing a semiconductor device includes increasing content of at least one of boron, phosphorus, or hydrogen in at least select regions of a dielectric material thereby increasing the material removal rate of a CMP process at the select regions, and removing material from the dielectric material using the CMP process.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: July 26, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Andrew Carswell, Tony M. Lindenberg, Mark Morley, Kyle Ritter, Lequn Liu
  • Publication number: 20160172208
    Abstract: Systems and methods for chemical mechanical planarization topography control via implants are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes increasing the content of at least one of silicon or germanium in at least select regions of a dielectric material thereby reducing the material removal rate for a chemical mechanical polishing (CMP) process at the select regions, and removing material from the dielectric material using the CMP process. In another embodiment, a method of manufacturing a semiconductor device includes increasing content of at least one of boron, phosphorus, or hydrogen in at least select regions of a dielectric material thereby increasing the material removal rate of a CMP process at the select regions, and removing material from the dielectric material using the CMP process.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Andrew Carswell, Tony M. Lindenberg, Mark Morley, Kyle Ritter, Lequn Liu
  • Patent number: 9362494
    Abstract: An array of cross point memory cells comprises spaced elevationally inner first lines, spaced elevationally outer second lines which cross the first lines, and a multi-resistive state region elevationally between the first and second lines where such cross. Individual of the multi-resistive state regions comprise elevationally outer multi-resistive state material and elevationally inner multi-resistive state material that are electrically coupled to one another. The inner multi-resistive state material has opposing edges in a vertical cross-section. The outer multi-resistive state material has opposing edges in the vertical cross-section that are laterally offset relative to the opposing edges of the inner multi-resistive state material in the vertical cross-section. Methods are also disclosed.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: June 7, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Stephen W. Russell, Tony M. Lindenberg
  • Publication number: 20150349255
    Abstract: An array of cross point memory cells comprises spaced elevationally inner first lines, spaced elevationally outer second lines which cross the first lines, and a multi-resistive state region elevationally between the first and second lines where such cross. Individual of the multi-resistive state regions comprise elevationally outer multi-resistive state material and elevationally inner multi-resistive state material that are electrically coupled to one another. The inner multi-resistive state material has opposing edges in a vertical cross-section. The outer multi-resistive state material has opposing edges in the vertical cross-section that are laterally offset relative to the opposing edges of the inner multi-resistive state material in the vertical cross-section. Methods are also disclosed.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 3, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fabio Pellizzer, Stephen W. Russell, Tony M. Lindenberg
  • Publication number: 20150279906
    Abstract: Some embodiments include a memory array which has a first series of access/sense lines extending along a first direction, and a second series of access/sense lines over the first series of access/sense lines and extending along a second direction which crosses the first direction. Memory cells are vertically between the first and second series of access/sense lines. Each memory cell is uniquely addressed by a combination of an access/sense line from the first series and an access/sense line from the second series. Resistance-increasing material is adjacent to and coextensive with the access/sense lines of one of the first and second series, and is between the adjacent access/sense lines and programmable material of the memory cells. Some embodiments include methods of forming memory arrays.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Applicant: Micron Technology, Inc.
    Inventor: Tony M. Lindenberg