Patents by Inventor Tooru Fuse

Tooru Fuse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936044
    Abstract: A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 ?m to 1 ?m of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 ?m to 1 ?m in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: March 19, 2024
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke Yamada, Nobuyuki Ishiwatari, Satoshi Akasaka, Daigo Nagayama, Shingo Morokuma, Koichi Nishio, Iwao Soga, Hideaki Tanaka, Takashi Kameda, Tooru Fuse, Hiromitsu Ikeda
  • Publication number: 20230352686
    Abstract: A method for producing a carbon material may include: granulating a raw carbon material by applying mechanical energy comprising impact, compression, friction, and/or shear force. The granulating may be carried out in the presence of a granulating agent. The granulating agent may be liquid during the granulating of the raw carbon material. Alternatively or in addition, the granulating agent may include no organic solvent, an organic solvent having no flash point, or no organic solvent having a flash point of 5° C. or higher.
    Type: Application
    Filed: June 9, 2023
    Publication date: November 2, 2023
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220407070
    Abstract: An object of the present invention is to provide a carbon material for negative electrodes of non-aqueous secondary batteries having a high capacity, a high output, excellent cycle characteristics and a low irreversible capacity. The present invention relates to a carbon material for negative electrodes of non-aqueous secondary batteries, the carbon material comprising: (1) a composite carbon particles (A) containing elemental silicon, and (2) amorphous composite graphite particles (B) in which graphite particles (C) and amorphous carbon are composited.
    Type: Application
    Filed: August 19, 2022
    Publication date: December 22, 2022
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Daigo NAGAYAMA, Tooru Fuse
  • Patent number: 11450853
    Abstract: An object of the present invention is to provide a carbon material for negative electrodes of non-aqueous secondary batteries having a high capacity, a high output, excellent cycle characteristics and a low irreversible capacity. The present invention relates to a carbon material for negative electrodes of non-aqueous secondary batteries, the carbon material comprising: (1) a composite carbon particles (A) containing elemental silicon, and (2) amorphous composite graphite particles (B) in which graphite particles (C) and amorphous carbon are composited.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 20, 2022
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Daigo Nagayama, Tooru Fuse, Hisako Kondo
  • Publication number: 20220123309
    Abstract: A carbon material may include granulated particles satisfying (1L) and (2L): (1L) the granulated particles are made of a carbonaceous material; and (2L) the granulated particles satisfy the relationship |X1?X|/X1?0.2, wherein X is a volume-based average particle diameter determined by laser diffraction, and X1 is an equivalent circular diameter as determined from a cross-sectional SEM image, provided that the cross-sectional SEM image is a reflected electron image acquired at an acceleration voltage of 10 kV, wherein the carbon material has an average box-counting dimension relative to void regions of 30 particles of 1.55 or greater, as calculated from images obtained by randomly selecting 30 granulated particles from a cross-sectional SEM image of the carbon material, dividing the cross-sectional SEM image of each granulated particle into void regions and non-void regions, and binarizing the image. Such carbon material may be used in electrodes and batteries.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220123310
    Abstract: A carbon material may include granulated particles made of a carbonaceous material and satisfying (2L): ? X 1 - X ? / X 1 ? 0.2 , ( 2 ? L ) wherein X is a volume-based average particle diameter determined by laser diffraction, and X1 is an equivalent circular diameter determined from a cross-sectional SEM image, which is a reflected electron image acquired at an acceleration voltage of 10 kV, wherein X and X1 are determined from a cross-sectional SEM image, by drawing grid lines to split the minor axis and the major axis of a target granulated particle each into 20 parts to obtain a grid, and using cells in the grid, compartmentalizing the target granulated particle in a compartment.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220123311
    Abstract: A carbon material may include granulated particles made of a carbonaceous material and satisfying (2L), ? X 1 - X ? / X 1 ? 0.2 , ( 2 ? L ) wherein X is a volume-based average particle diameter determined by laser diffraction, and X1 is an equivalent circular diameter determined from a cross-sectional SEM image, which is a reflected electron image acquired at 10 kV, wherein the carbon material has an average inter-void distance Z of 30 granulated particles randomly selected from a cross-sectional SEM image of the carbon material, as Zave, and wherein the carbon material has volume-based average particle diameter X determined by laser diffraction in a Zave/X ratio of 0.060 or less.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20220123308
    Abstract: A carbon material may satisfying inequality (1K): 10.914 > 5 ? x k - y k - 0.0087 ? a , ( 1 ? K ) wherein a is a volume-based average particle diameter in um of the carbon material, xk is a true density in g/cm3 of the carbon material, and yk is a value determined by equation (2K): y k = D 100 - D T , ( 2 ? K ) wherein D100 is density in g/cm3 of carbon material under uniaxial load of 100 kgf/3.14 cm2, and DT is tap density of carbon material in g/cm3. Such carbon materials may be used in electrodes and batteries.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Patent number: 10720645
    Abstract: An objet of the invention is to provide a non-aqueous electrolyte secondary battery superior in input-output characteristics even at a low temperature. To achieve the object, hybrid particles (carbon material) satisfying certain conditions, and composed of graphite particles and carbon particles with a primary particle size from 3 nm to 500 nm, preferably as well as amorphous carbon, are used as a negative electrode active material for a non-aqueous electrolyte secondary battery, so that the input-output characteristics of a non-aqueous electrolyte secondary battery at a low temperature can be improved remarkably.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: July 21, 2020
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke Yamada, Nobuyuki Ishiwatari, Akio Ueda, Tooru Fuse, Masakazu Yokomizo, Akihiro Katou
  • Publication number: 20200185721
    Abstract: Provided is a method to manufacture a composite carbon material capable of obtaining a non-aqueous secondary battery, which has high capacity, initial efficiency, and low charging resistance and is excellent in productivity. As a result thereof, a high-performance non-aqueous secondary battery is stably provided with efficiency. A composite carbon material for a non-aqueous secondary battery is provided, which contains at least a bulk mesophase artificial graphite particle (A) and graphite particle (B) having an aspect ratio of 5 or greater, and which is capable of absorbing and releasing lithium ions. A graphite crystal layered structure of the graphite particle (B) is arranged in the same direction as a direction of an outer peripheral surface of the bulk mesophase artificial graphite particle (A) at a part of a surface of the bulk mesophase artificial graphite particle (A), and an average circularity of the composite carbon material is 0.9 or greater.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Iwao SOGA, Hideaki TANAKA, Tooru FUSE, Shingo MOROKUMA, Koichi NISHIO
  • Publication number: 20180013146
    Abstract: Provided is a carbon material capable of obtaining a non-aqueous secondary battery, which has high capacity, initial efficiency, and low charging resistance and is excellent in productivity. As a result thereof, a high-performance non-aqueous secondary battery is stably provided with efficiency. A composite carbon material for a non-aqueous secondary battery is provided, which contains at least a bulk mesophase artificial graphite particle (A) and graphite particle (B) having an aspect ratio of 5 or greater, and which is capable of absorbing and releasing lithium ions. A graphite crystal layered structure of the graphite particle (B) is arranged in the same direction as a direction of an outer peripheral surface of the bulk mesophase artificial graphite particle (A) at a part of a surface of the bulk mesophase artificial graphite particle (A), and an average circularity of the composite carbon material is 0.9 or greater.
    Type: Application
    Filed: July 14, 2017
    Publication date: January 11, 2018
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: SHUNSUKE YAMADA, NOBUYUKI ISHIWATARI, SATOSHI AKASAKA, IWAO SOGA, HIDEAKI TANAKA, TOORU FUSE, SHINGO MOROKUMA, KOICHI NISHIO
  • Publication number: 20170187041
    Abstract: A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 ?m to 1 ?m of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 ?m to 1 ?m in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.
    Type: Application
    Filed: January 5, 2017
    Publication date: June 29, 2017
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Nobuyuki ISHIWATARI, Satoshi AKASAKA, Daigo NAGAYAMA, Shingo MOROKUMA, Koichi NISHIO, Iwao SOGA, Hideaki TANAKA, Takashi KAMEDA, Tooru FUSE, Hiromitsu IKEDA
  • Publication number: 20160276668
    Abstract: An object of the present invention is to provide a carbon material for negative electrodes of non-aqueous secondary batteries having a high capacity, a high output, excellent cycle characteristics and a low irreversible capacity. The present invention relates to a carbon material for negative electrodes of non-aqueous secondary batteries, the carbon material comprising: (1) a composite carbon particles (A) containing elemental silicon, and (2) amorphous composite graphite particles (B) in which graphite particles (C) and amorphous carbon are composited.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Daigo NAGAYAMA, Tooru FUSE, Hisako KONDO
  • Patent number: 9263734
    Abstract: The present invention resolves the problem by using a multilayer-structured carbon material, as a nonaqueous electrolytic solution secondary battery negative electrode, which satisfies the following (a) and (b): (a) (Void fraction calculated from DBP oil absorption)/(Void fraction calculated from tapping density) is less than 1.01; and (b) Surface oxygen content (O/C) determined by X-ray photoelectron spectroscopy is 1.5 atomic % or more.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: February 16, 2016
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Masakazu Yokomizo, Tooru Fuse, Yosuke Saito, Masashi Fujiwara, Akihiro Kato
  • Publication number: 20150243989
    Abstract: An objet of the invention is to provide a non-aqueous electrolyte secondary battery superior in input-output characteristics even at a low temperature. To achieve the object, hybrid particles (carbon material) satisfying certain conditions, and composed of graphite particles and carbon particles with a primary particle size from 3 nm to 500 nm, preferably as well as amorphous carbon, are used as a negative electrode active material for a non-aqueous electrolyte secondary battery, so that the input-output characteristics of a non-aqueous electrolyte secondary battery at a low temperature can be improved remarkably.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 27, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: SHUNSUKE YAMADA, Nobuyuki Ishiwatari, Akio Ueda, Tooru Fuse, Masakazu Yokomizo, Akihiro Katou
  • Publication number: 20150194668
    Abstract: An object of the invention is to provide composite graphite particles (C) for nonaqueous-secondary-battery negative electrode, wherein metallic particle (B) capable of alloying with Li are present in inner parts thereof in a large amount. The invention relates to a composite graphite particle (C) for nonaqueous-secondary-battery negative electrode, the composite graphite particle (C) comprising a graphite (A) and a metallic particle (B) capable of alloying with Li, wherein when a section of the composite graphite particle (C) is examined with a scanning electron microscope, a folded structure of the graphite (A) is observed and a presence ratio of the metallic particle (B) in the composite graphite particle (C), as calculated by a specific measuring method, is 0.2 or higher.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Akio UEDA, Satoshi Akasaka, Nobuyuki Ishiwatari, Tooru Fuse, Takashi Kameda, Harumi Asami, Takahide Kimura, Shunsuke Yamada
  • Patent number: 8936876
    Abstract: This invention aims to provide a carbon material for a nonaqueous secondary battery having a high capacity and excellent charging/discharging load characteristics, which is used as a negative electrode material for a nonaqueous secondary battery. This invention relates to a carbon material for a nonaqueous secondary battery, which has a specific (1) Raman R value, (2) N atom concentration/C atom concentration ratio, and (3) S atom concentration/C atom concentration ratio.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: January 20, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shunsuke Yamada, Tooru Fuse, Nobuyuki Ishiwatari
  • Publication number: 20140065479
    Abstract: This invention aims to provide a carbon material for a nonaqueous secondary battery having a high capacity and excellent charging/discharging load characteristics, which is used as a negative electrode material for a nonaqueous secondary battery. This invention relates to a carbon material for a nonaqueous secondary battery, which has a specific (1) Raman R value, (2) N atom concentration/C atom concentration ratio, and (3) S atom concentration/C atom concentration ratio.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 6, 2014
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke YAMADA, Tooru Fuse, Nobuyuki Ishiwatari
  • Patent number: 8637187
    Abstract: A negative-electrode material is provided that can be produced at a low cost and yields a lithium secondary battery with an excellent balance of various battery characteristics even when used in high electrode densities. It has a graphite powder with a tap density of 0.80 g/cm3 or higher and 1.35 g/cm3 or lower, an amount of surface functional groups, O/C value, of 0 or larger and 0.01 or smaller, a BET specific surface area of 2.5 m2/g or larger and 70 m2/g or smaller, a Raman R value of 0.02 or larger and 0.05 or smaller.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: January 28, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Tooru Fuse, Hiroyuki Uono, Keita Yamaguchi, Tomiyuki Kamada
  • Publication number: 20130252093
    Abstract: The present invention resolves the problem by using a multilayer-structured carbon material, as a nonaqueous electrolytic solution secondary battery negative electrode, which satisfies the following (a) and (b): (a) (Void fraction calculated from DBP oil absorption)/(Void fraction calculated from tapping density) is less than 1.01; and (b) Surface oxygen content (O/C) determined by X-ray photoelectron spectroscopy is 1.5 atomic % or more.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 26, 2013
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Masakazu Yokomizo, Tooru Fuse, Yosuke Saito, Masashi Fujiwara, Akihiro Kato