Patents by Inventor Toranosuke Ashizawa

Toranosuke Ashizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160359078
    Abstract: A composition for forming an n-type diffusion layer, comprising glass particles that comprise a donor element, a dispersing medium, and an organometallic compound; a method of forming an n-type diffusion layer; a method of producing a semiconductor substrate with n-type diffusion layer; and a method of producing a photovoltaic cell element.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 8, 2016
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Tetsuya SATO, Masato YOSHIDA, Takeshi NOJIRI, Yasushi KURATA, Toranosuke ASHIZAWA, Yoichi MACHII, Mitsunori IWAMURO, Akihiro ORITA, Mari SHIMIZU, Elichi SATOU
  • Publication number: 20150017754
    Abstract: The invention provides composition for forming an n-type diffusion layer, the composition comprising a compound containing a donor element, a dispersing medium, and an organic filler; a method for producing a semiconductor substrate having an n-type diffusion layer; and a method for producing a photovoltaic cell element.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 15, 2015
    Inventors: Tetsuya Sato, Masato Yoshida, Takeshi Nojiri, Toranosuke Ashizawa, Yasushi Kurata, Yoichi Machii, Mitsunori Iwamuro, Akihiro Orita, Mari Shimizu
  • Patent number: 8616936
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor which make use of this abrasive.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: December 31, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Publication number: 20120227331
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor which make use of this abrasive.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 13, 2012
    Inventors: Masato YOSHIDA, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Patent number: 8162725
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor device which make use of this abrasive.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: April 24, 2012
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Patent number: 8137159
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor device which make use of this abrasive.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: March 20, 2012
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Publication number: 20110312251
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor device which make use of this abrasive.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 22, 2011
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Patent number: 8075800
    Abstract: A polishing slurry containing a slurry dispersing particles of tetravalent metal hydroxide in a medium therein and an additive, characterized in that the additive is a polymer containing at least one kind of monomer component selected from a group of monomers represented with a general formulae (I) and (II) below (In the general formulae (I) and (II), R1 denotes hydrogen, a methyl group, a phenyl group, a benzil group, a chlorine group, a difluoromethyl group, a trifluoromethyl group or a cyano group, R2 and R3 denote hydrogen or an alkyl chain having 1 to 18 carbon atoms, a methylol group, an acetyl group or a diacetonyl group, and a case where both are hydrogen is not included. R4 denotes a morpholino group, a thiomorpholino group, a pyrrolidinyl group or a piperidino group.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: December 13, 2011
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Naoyuki Koyama, Youichi Machii, Masato Yoshida, Masato Fukasawa, Toranosuke Ashizawa
  • Patent number: 8002860
    Abstract: The present invention discloses a CMP abrasive comprising cerium oxide particles, a dispersant, an organic polymer having an atom or a structure capable of forming a hydrogen bond with a hydroxyl group present on a surface of a film to be polished and water, a method for polishing a substrate comprising polishing a film to be polished by moving a substrate on which the film to be polished is formed and a polishing platen while pressing the substrate against the polishing platen and a polishing cloth and supplying the CMP abrasive between the film to be polished and the polishing cloth, a method for manufacturing a semiconductor device comprising the steps of the above-mentioned polishing method, and an additive for a CMP abrasive comprising an organic polymer having an atom or a structure capable of forming a hydrogen bond with a hydroxyl group present on a surface of a film to be polished, and water.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: August 23, 2011
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Naoyuki Koyama, Kouji Haga, Masato Yoshida, Keizou Hirai, Toranosuke Ashizawa, Youiti Machii
  • Patent number: 7963825
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor device which make use of this abrasive.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: June 21, 2011
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Patent number: 7887609
    Abstract: A polishing slurry for polishing an aluminum film used for LSI or the like and a method for polishing an aluminum film using the same are provided. A polishing slurry for polishing an aluminum film comprising a polyvalent carboxylic acid having a first stage acid dissociation exponent at 25° C. of 3 or lower, colloidal silica, and water, and having a pH from 2 to 4, and a polishing method for polishing an aluminum film using the polishing slurry.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: February 15, 2011
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Ono, Toranosuke Ashizawa, Yasuo Kamigata
  • Patent number: 7871308
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor device which make use of this abrasive.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: January 18, 2011
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Patent number: 7867303
    Abstract: A cerium oxide abrasive slurry having, dispersed in a medium, cerium oxide particles whose primary particles have a median diameter of from 30 nm to 250 nm, a maximum particle diameter of 600 nm or smaller, and a specific surface area of from 7 to 45 m.2/g, and slurry particles have a median diameter of from 150 nm to 600 nm. The cerium oxide particles have structural parameter Y, representing an isotropic microstrain obtained by an X-ray Rietveld method (with RIETAN-94), of from 0.01 to 0.70, and structural parameter X, representing a primary particle diameter obtained by an X-ray Rietveld method (with RIETAN-94), of from 0.08 to 0.3. The cerium oxide abrasive slurry is made by a method of obtaining particles by firing at a temperature of from 600° C. to 900° C. and then pulverizing, then dispersing the resulting cerium oxide particles in a medium.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: January 11, 2011
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno, Yuuto Ootuki
  • Patent number: 7708788
    Abstract: A cerium oxide abrasive slurry having, dispersed in a medium, cerium oxide particles whose primary particles have a median diameter of from 30 nm to 250 nm, a maximum particle diameter of 600 nm or smaller, and a specific surface area of from 7 to 45 m.2/g, and slurry particles have a median diameter of from 150 nm to 600 nm. The cerium oxide particles have structural parameter Y, representing an isotropic microstrain obtained by an X-ray Rietveld method (with RIETAN-94), of from 0.01 to 0.70, and structural parameter X, representing a primary particle diameter obtained by an X-ray Rietveld method (with RIETAN-94), of from 0.08 to 0.3. The cerium oxide abrasive slurry is made by a method of obtaining particles by firing at a temperature of from 600° C. to 900° C. and then pulverizing, then dispersing the resulting cerium oxide particles in a medium.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: May 4, 2010
    Assignee: Hitachi Chemical Co, Ltd.
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno, Yuuto Ootuki
  • Publication number: 20100001229
    Abstract: The present invention provides a CMP slurry for silicon film, and by using such the slurry, polishing rates and polishing rate ratios of a silicon film, a silicon nitride film and a silicon oxide film required for performing CMP are obtained. In the CMP, a single slurry is used for forming a contact plug in self-alignment manner to decrease costs for producing semiconductor elements and improve yield. The slurry comprises abrasive grains, a cationic surfactant and water and has a pH value of 6.0 to 8.0.
    Type: Application
    Filed: August 26, 2009
    Publication date: January 7, 2010
    Inventors: Hiroshi Nakagawa, Toranosuke Ashizawa, Takenori Narita, Masaya Nishiyama
  • Publication number: 20090253355
    Abstract: The present invention discloses a CMP abrasive comprising cerium oxide particles, a dispersant, an organic polymer having an atom or a structure capable of forming a hydrogen bond with a hydroxyl group present on a surface of a film to be polished and water, a method for polishing a substrate comprising polishing a film to be polished by moving a substrate on which the film to be polished is formed and a polishing platen while pressing the substrate against the polishing platen and a polishing cloth and supplying the CMP abrasive between the film to be polished and the polishing cloth, a method for manufacturing a semiconductor device comprising the steps of the above-mentioned polishing method, and an additive for a CMP abrasive comprising an organic polymer having an atom or a structure capable of forming a hydrogen bond with a hydroxyl group present on a surface of a film to be polished, and water.
    Type: Application
    Filed: June 15, 2009
    Publication date: October 8, 2009
    Inventors: Naoyuki Koyama, Kouji Haga, Masato Yoshida, Keizou Hirai, Toranosuke Ashizawa, Youiti Machii
  • Publication number: 20080271383
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor device which make use of this abrasive.
    Type: Application
    Filed: July 10, 2008
    Publication date: November 6, 2008
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno
  • Publication number: 20080200032
    Abstract: The present invention relates to a method of polishing a semiconductor substrate, comprising pressing a semiconductor substrate having a film to be polished that is held by a carrier onto a polishing cloth fixed on a revolving polishing table and supplying a polishing slurry to the space between the polishing cloth and the semiconductor substrate, wherein the end point of polishing is determined according to the change in the friction coefficient while the friction coefficient between the semiconductor substrate and the polishing cloth is measured. According to the present invention it is possible to measure friction coefficient accurately in polishing a semiconductor substrate and use the change thereof to determine the end point of polishing.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 21, 2008
    Applicants: HITACHI CHEMICAL CO., LTD., ARACA INCORPORATED
    Inventors: Toranosuke ASHIZAWA, Masaya NISHIYAMA, Ara PHILIPOSSIAN, Yun ZHUANG, Yasa Adi SAMPURNO, Fransisca SUDARGHO
  • Patent number: 7410409
    Abstract: The present invention discloses a CMP abrasive comprising cerium oxide particles, a dispersant, an organic polymer having an atom or a structure capable of forming a hydrogen bond with a hydroxyl group present on a surface of a film to be polished and water, a method for polishing a substrate comprising polishing a film to be polished by moving a substrate on which the film to be polished is formed and a polishing platen while pressing the substrate against the polishing platen and a polishing cloth and supplying the CMP abrasive between the film to be polished and the polishing cloth, a method for manufacturing a semiconductor device comprising the steps of the above-mentioned polishing method, and an additive for a CMP abrasive comprising an organic polymer having an atom or a structure capable of forming a hydrogen bond with a hydroxyl group present on a surface of a film to be polished, and water.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: August 12, 2008
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Naoyuki Koyama, Kouji Haga, Masato Yoshida, Keizou Hirai, Toranosuke Ashizawa, Youiti Machii
  • Publication number: 20070266642
    Abstract: To polish polishing target surfaces of SiO2 insulating films or the like at a high rate without scratching the surface, the present invention provides an abrasive comprising a slurry comprising a medium and dispersed therein at least one of i) cerium oxide particles constituted of at least two crystallites and having crystal grain boundaries or having a bulk density of not higher than 6.5 g/cm3 and ii) abrasive grains having pores. Also provided are a method of polishing a target member and a process for producing a semiconductor device which make use of this abrasive.
    Type: Application
    Filed: July 25, 2007
    Publication date: November 22, 2007
    Inventors: Masato Yoshida, Toranosuke Ashizawa, Hiroki Terazaki, Yuuto Ootuki, Yasushi Kurata, Jun Matsuzawa, Kiyohito Tanno