Patents by Inventor Torbjørn Heglum

Torbjørn Heglum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8611180
    Abstract: Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: December 17, 2013
    Assignee: Optoplan AS
    Inventors: Arne Berg, Torbjørn Heglum, Roar Furuhaug, Tormod Bliksås
  • Publication number: 20110222374
    Abstract: Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 15, 2011
    Inventors: Arne Berg, Torbjørn Heglum, Roar Furuhaug, Tormod Bliksås
  • Patent number: 7969817
    Abstract: Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: June 28, 2011
    Assignee: Optoplan AS
    Inventors: Arne Berg, Torbjørn Heglum, Roar Furuhaug, Tormod Bliksås
  • Patent number: 7679989
    Abstract: Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 16, 2010
    Assignee: Optoplan AS
    Inventors: Arne Berg, Torbjørn Heglum, Roar Furuhaug, Tormod Bliksås
  • Publication number: 20100034051
    Abstract: Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
    Type: Application
    Filed: October 13, 2009
    Publication date: February 11, 2010
    Inventors: ARNE BERG, Torbjørn Heglum, Roar Furuhaug, Tormod Bliksås
  • Patent number: 7503215
    Abstract: Accelerometers for determining acceleration and methods of fabricating an accelerometer are disclosed. In one embodiment, the accelerometer includes a frame, a mass movably suspended on the frame, a fixed element having a rounded surface that does not move with respect to the frame, a movable element having a rounded surface that moves with the mass, and a sensing coil of optical waveguide wrapped around the rounded surfaces to detect movement of the mass in response to acceleration based on interferometric sensing of a change in length of the sensing coil. A method of fabricating the accelerometer includes suspending the mass in the frame and wrapping the optical waveguide around the rounded surfaces. Sensitivity and low fabrication cost of the accelerometers enables their use for integration within an ocean bottom seismic cable. Further, the accelerometer may be an in-line or a cross-line accelerometer depending on the arrangement within the frame.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: March 17, 2009
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Arne Berg, Torbjoern Heglum
  • Publication number: 20080011082
    Abstract: Accelerometers for determining acceleration and methods of fabricating an accelerometer are disclosed. In one embodiment, the accelerometer includes a frame, a mass movably suspended on the frame, a fixed element having a rounded surface that does not move with respect to the frame, a movable element having a rounded surface that moves with the mass, and a sensing coil of optical waveguide wrapped around the rounded surfaces to detect movement of the mass in response to acceleration based on interferometric sensing of a change in length of the sensing coil. A method of fabricating the accelerometer includes suspending the mass in the frame and wrapping the optical waveguide around the rounded surfaces. Sensitivity and low fabrication cost of the accelerometers enables their use for integration within an ocean bottom seismic cable. Further, the accelerometer may be an in-line or a cross-line accelerometer depending on the arrangement within the frame.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 17, 2008
    Inventors: ARNE BERG, Torbjoern Heglum
  • Patent number: 7243543
    Abstract: Accelerometers for determining acceleration and methods of fabricating an accelerometer are disclosed. In one embodiment, the accelerometer includes a frame, a mass movably suspended on the frame, a fixed element having a rounded surface that does not move with respect to the frame, a movable element having a rounded surface that moves with the mass, and a sensing coil of optical waveguide wrapped around the rounded surfaces to detect movement of the mass in response to acceleration based on interferometric sensing of a change in length of the sensing coil. A method of fabricating the accelerometer includes suspending the mass in the frame and wrapping the optical waveguide around the rounded surfaces. Sensitivity and low fabrication cost of the accelerometers enables their use for integration within an ocean bottom seismic cable. Further, the accelerometer may be an in-line or a cross-line accelerometer depending on the arrangement within the frame.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: July 17, 2007
    Assignee: Optoplan AS
    Inventors: Arne Berg, Torbjoern Heglum
  • Publication number: 20050097955
    Abstract: Accelerometers for determining acceleration and methods of fabricating an accelerometer are disclosed. In one embodiment, the accelerometer includes a frame, a mass movably suspended on the frame, a fixed element having a rounded surface that does not move with respect to the frame, a movable element having a rounded surface that moves with the mass, and a sensing coil of optical waveguide wrapped around the rounded surfaces to detect movement of the mass in response to acceleration based on interferometric sensing of a change in length of the sensing coil. A method of fabricating the accelerometer includes suspending the mass in the frame and wrapping the optical waveguide around the rounded surfaces. Sensitivity and low fabrication cost of the accelerometers enables their use for integration within an ocean bottom seismic cable. Further, the accelerometer may be an in-line or a cross-line accelerometer depending on the arrangement within the frame.
    Type: Application
    Filed: December 21, 2004
    Publication date: May 12, 2005
    Inventors: Arne Berg, Torbjoern Heglum