Patents by Inventor Torin Arni Taerum

Torin Arni Taerum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230284924
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Application
    Filed: May 19, 2023
    Publication date: September 14, 2023
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Publication number: 20230270346
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Application
    Filed: March 13, 2023
    Publication date: August 31, 2023
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Patent number: 11633119
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: April 25, 2023
    Assignee: ARTERYS INC.
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Publication number: 20230106440
    Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Inventors: Daniel Irving GOLDEN, Fabien Rafael David BECKERS, John AXERIO-CILIES, Matthieu LE, Jesse LIEMAN-SIFRY, Anitha Priya KRISHNAN, Sean Patrick SALL, Hok Kan LAU, Matthew Joseph DIDONATO, Robert George NEWTON, Torin Arni TAERUM, Shek Bun LAW, Carla Rosa LEIBOWITZ, Angélique Sophie CALMON
  • Patent number: 11551353
    Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: January 10, 2023
    Assignee: Arterys Inc.
    Inventors: Daniel Irving Golden, Fabien Rafael David Beckers, John Axerio-Cilies, Matthieu Le, Jesse Lieman-Sifry, Anitha Priya Krishnan, Sean Patrick Sall, Hok Kan Lau, Matthew Joseph Didonato, Robert George Newton, Torin Arni Taerum, Shek Bun Law, Carla Rosa Leibowitz, Angélique Sophie Calmon
  • Publication number: 20220415479
    Abstract: This disclosure relates to a system that synchronizes the presentation of medical images in multiple contexts and methods thereof. The system includes a variety of contexts that display medical images, and the contexts are connected by communication channels. When a user edits or otherwise interacts with one of the contexts, a message is sent to other contexts via the communication channels, and the other contexts can adjust their presentation of medical images to achieve synchronization.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 29, 2022
    Inventor: Torin Arni TAERUM
  • Patent number: 11515032
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: November 29, 2022
    Assignee: ARTERYS INC.
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Publication number: 20210085195
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 25, 2021
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Patent number: 10871536
    Abstract: Systems and methods for automated segmentation of anatomical structures, such as the human heart. The systems and methods employ convolutional neural networks (CNNs) to autonomously segment various parts of an anatomical structure represented by image data, such as 3D MRI data. The convolutional neural network utilizes two paths, a contracting path which includes convolution/pooling layers, and an expanding path which includes upsampling/convolution layers. The loss function used to validate the CNN model may specifically account for missing data, which allows for use of a larger training set. The CNN model may utilize multi-dimensional kernels (e.g., 2D, 3D, 4D, 6D), and may include various channels which encode spatial data, time data, flow data, etc. The systems and methods of the present disclosure also utilize CNNs to provide automated detection and display of landmarks in images of anatomical structures.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: December 22, 2020
    Assignee: ARTERYS INC.
    Inventors: Daniel Irving Golden, John Axerio-Cilies, Matthieu Le, Torin Arni Taerum, Jesse Lieman-Sifry
  • Patent number: 10869608
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: December 22, 2020
    Assignee: ARTERYS INC.
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Publication number: 20200380675
    Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.
    Type: Application
    Filed: November 15, 2018
    Publication date: December 3, 2020
    Inventors: Daniel Irving GOLDEN, Fabien Rafael David BECKERS, John AXERIO-CILIES, Matthieu LE, Jesse LIEMAN-SIFRY, Anitha Priya KRISHNAN, Sean Patrick SALL, Hok Kan LAU, Matthew Joseph DIDONATO, Robert George NEWTON, Torin Arni TAERUM, Shek Bun LAW, Carla Rosa LEIBOWITZ, Angélique Sophie CALMON
  • Patent number: 10693940
    Abstract: Systems and methods for providing remote access to an application program. A server remote access program may cooperate with display data interception application to provide display data to a client computing device. The client computing device may connect to the application at a Uniform Resourced Locator (URL) using a client remote access application to receive the display data. The client remote access application may provide user inputs, received at the client computing device, to the application to affect the state of the application.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: June 23, 2020
    Assignee: CALGARY SCIENTIFIC INC.
    Inventors: Monroe M. Thomas, Glen Lehmann, Matt Stephure, David B. McFadzean, Pierre Lemire, Torin Arni Taerum
  • Publication number: 20200085382
    Abstract: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.
    Type: Application
    Filed: May 30, 2018
    Publication date: March 19, 2020
    Inventors: Torin Arni Taerum, Hok Kan Lau, Sean Sall, Matthieu Le, John Axerio-Cilies, Daniel Irving Golden, Jesse Lieman-Sifry, Tristan Jugdev
  • Publication number: 20200054235
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: perform error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. An asynchronous command and imaging pipeline allows remote image processing and analysis in a timely and secure manner even with complicated or large 4-D flow MRI data sets.
    Type: Application
    Filed: August 27, 2019
    Publication date: February 20, 2020
    Inventors: Fabien Beckers, Albert Hsiao, John Axerio-Cilies, Torin Arni Taerum, Daniel Marc Raymond Beauchamp
  • Patent number: 10535189
    Abstract: Systems and methods for determining a centerline of a tubular structure from volumetric data of vessels where a contrast agent was injected into the blood stream to enhance the imagery for centerlining. Given a 3D array of scalar values and a first and second point, the system and methods iteratively find a path from the start position to the end position that lies in the center of a tubular structure. A user interface may be provided to visually present and manipulate a centerline of the tubular structure and the tubular structure itself.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: January 14, 2020
    Assignee: CALGARY SCIENTIFIC INC.
    Inventors: Torin Arni Taerum, Jonathan Neil Draper, Robert George Newton
  • Publication number: 20190272898
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Application
    Filed: May 10, 2019
    Publication date: September 5, 2019
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Patent number: 10398344
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: perform error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. An asynchronous command and imaging pipeline allows remote image processing and analysis in a timely and secure manner even with complicated or large 4-D flow MRI data sets.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: September 3, 2019
    Assignee: Arterys Inc.
    Inventors: Fabien Beckers, Albert Hsiao, John Axerio-Cilies, Torin Arni Taerum, Daniel Marc Raymond Beauchamp
  • Patent number: 10331852
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. A protected health information (PHI) service is provided which de-identifies medical study data and allows medical providers to control PHI data, and uploads the de-identified data to an analytics service provider (ASP) system. A web application is provided which merges the PHI data with the de-identified data while keeping control of the PHI data with the medical provider.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: June 25, 2019
    Assignee: Arterys Inc.
    Inventors: Kyle Dormer, Hussein Patni, Darryl Bidulock, John Axerio-Cilies, Torin Arni Taerum
  • Publication number: 20190069802
    Abstract: An MRI image processing and analysis system may identify instances of structure in MRI flow data, e.g., coherency, derive contours and/or clinical markers based on the identified structures. The system may be remotely located from one or more MRI acquisition systems, and perform: perform error detection and/or correction on MRI data sets (e.g., phase error correction, phase aliasing, signal unwrapping, and/or on other artifacts); segmentation; visualization of flow (e.g., velocity, arterial versus venous flow, shunts) superimposed on anatomical structure, quantification; verification; and/or generation of patient specific 4-D flow protocols. An asynchronous command and imaging pipeline allows remote image processing and analysis in a timely and secure manner even with complicated or large 4-D flow MRI data sets.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: Fabien Beckers, Albert Hsiao, John Axerio-Cilies, Torin Arni Taerum, Daniel Marc Raymond Beauchamp
  • Publication number: 20180375916
    Abstract: Systems and methods for providing remote access to an application program. A server remote access program may cooperate with display data interception application to provide display data to a client computing device. The client computing device may connect to the application at a Uniform Resourced Locator (URL) using a client remote access application to receive the display data. The client remote access application may provide user inputs, received at the client computing device, to the application to affect the state of the application.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 27, 2018
    Inventors: Monroe M. Thomas, Glen Lehmann, Matt Stephure, David B. McFadzean, Pierre Lemire, Torin Arni Taerum