Patents by Inventor Torren Carlson

Torren Carlson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8864984
    Abstract: This invention relates to compositions comprising fluid hydrocarbon products, and to methods for making fluid hydrocarbon products via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. The methods described herein may also involve the use of specialized catalysts. For example, in some cases, zeolite catalysts may be used.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: October 21, 2014
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Publication number: 20130060070
    Abstract: The invention relates to methods for producing fluid hydrocarbon products, and more specifically, to methods for producing fluid hydrocarbon product via catalytic pyrolysis. The reactants comprise solid hydrocarbonaceous materials, and hydrogen or a source of hydrogen (e.g., an alcohol). The products may include specific aromatic compounds (e.g., benzene, toluene, naphthalene, xylene, etc.).
    Type: Application
    Filed: August 13, 2012
    Publication date: March 7, 2013
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: George W. Huber, Huiyan Zhang, Torren Carlson
  • Publication number: 20130023706
    Abstract: This invention relates to compositions comprising fluid hydrocarbon products, and to methods for making fluid hydrocarbon products via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. The methods described herein may also involve the use of specialized catalysts. For example, in some cases, zeolite catalysts may be used.
    Type: Application
    Filed: August 30, 2012
    Publication date: January 24, 2013
    Applicant: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Patent number: 8277643
    Abstract: This invention relates to compositions and methods for fluid hydrocarbon product, and more specifically, to compositions and methods for fluid hydrocarbon product via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods may involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. In some embodiments, the mixture may be pyrolyzed at high temperatures (e.g., between 500° C. and 1000° C.). The pyrolysis may be conducted for an amount of time at least partially sufficient for production of discrete, identifiable biofuel compounds. Some embodiments involve heating the mixture of catalyst and hydrocarbonaceous material at high rates (e.g., from about 50° C. per second to about 1000° C. per second). The methods described herein may also involve the use of specialized catalysts.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: October 2, 2012
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Publication number: 20090227823
    Abstract: This invention relates to compositions and methods for fluid hydrocarbon product, and more specifically, to compositions and methods for fluid hydrocarbon product via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods may involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. In some embodiments, the mixture may be pyrolyzed at high temperatures (e.g., between 500° C. and 1000° C.). The pyrolysis may be conducted for an amount of time at least partially sufficient for production of discrete, identifiable biofuel compounds. Some embodiments involve heating the mixture of catalyst and hydrocarbonaceous material at high rates (e.g., from about 50° C. per second to about 1000° C. per second). The methods described herein may also involve the use of specialized catalysts.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 10, 2009
    Applicant: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Publication number: 20070047219
    Abstract: Direct-lit light backlights and associated methods and components are disclosed. The backlight has an output area such as a front diffuser behind which a plurality of light sources are disposed. A diverter having a first and second reflective surface is disposed between at least two light sources and the front diffuser. The first reflective surface is obliquely disposed to redirect at least some of the light emitted by the light source towards the front diffuser away from the front diffuser. The second reflective surface is obliquely disposed to redirect at least some light propagating laterally relative to the front diffuser towards the front diffuser.
    Type: Application
    Filed: July 20, 2006
    Publication date: March 1, 2007
    Inventors: David Thompson, Craig Schardt, Torren Carlson, Gregory Jager, John Wheatley