Patents by Inventor Torsten Hoffmann

Torsten Hoffmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230142739
    Abstract: Provided herein, inter alia, are stabilizers of protein-protein interactions and methods of identifying and using the same.
    Type: Application
    Filed: April 2, 2021
    Publication date: May 11, 2023
    Inventors: Michelle R. Arkin, Lucas Brunsveld, Christian Ottmann, Adam R. Renslo, R. Jeffrey Neitz, Mengqi Zhong, Kenneth K. Hallenbeck, Priyadarshini Jaishankar, Shubhankar Dutta, John K. Morrow, Eline Sijbesma, Bente Aminhan Somsen, Galen Patrick Miley, Emira Josien Visser, Peter James Cossar, Madita Wolter, Thorsten Genski, Laura Mariana Levy, Torsten Hoffmann, Dimitrios Tzalis, Dario Valenti, Markella Konstantinidou
  • Publication number: 20220274977
    Abstract: The invention relates to a compound of formula (1): A-B-D-E??(1) or a pharmaceutically acceptable salt, solvate or polymorph thereof, including all tautomers and stereoisomers thereof, wherein: A is selected from monocyclic and bicyclic heteroaryl, which may independently substituted by alkyl or amino; B is selected from alkyl, heteroalkyl, alkyl-amino, aryl, heteroaryl, cycloalkyl, heterocyclyl and alkylene, wherein said groups may independently be substituted by alkyl; D is selected from aryl-amino, heteroaryl-amino, cycloalkyl-amino, heterocyclyl, heterocyclyl-amino, urea, thioamide, thiourea, sulfonamide, sulfoximine and sulfamoyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups may independently be substituted; and E is selected from aryl, heteroaryl, cycloalkyl, heterocyclyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups may independently be substituted. The compounds of formula (1) are inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5).
    Type: Application
    Filed: May 5, 2022
    Publication date: September 1, 2022
    Inventors: Ulrich HEISER, Torsten HOFFMANN, Ingeborg LUES, Antje MEYER
  • Patent number: 11339152
    Abstract: The invention relates to a compound of formula (I): A-B-D-E (I) or a pharmaceutically acceptable salt, solvate or polymorph thereof, including all tautomers and stereoisomers thereof, wherein: A is selected from monocyclic and bicyclic heteroaryl, which may independently substituted by alkyl or amino; B is selected from alkyl, heteroalkyl, alkyl-amino, aryl, heteroaryl, cycloalkyl, heterocyclyl and alkylene, wherein said groups may independently be substituted by alkyl; D is selected from aryl-amino, heteroaryl-amino, cycloalkyl-amino, heterocyclyl, heterocyclyl-amino, urea, thioamide, thiourea, sulfonamide, sulfoximine and sulfamoyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups may independently be substituted; and E is selected from aryl, heteroaryl, cycloalkyl, heterocyclyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups may independently be substituted. The compounds of formula (I) are inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5).
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: May 24, 2022
    Inventors: Ulrich Heiser, Torsten Hoffmann, Ingeborg Lues, Antje Meyer
  • Publication number: 20200377493
    Abstract: The invention relates to a compound of formula (I): A-B-D-E (I) or a pharmaceutically acceptable salt, solvate or polymorph thereof, including all tautomers and stereoisomers thereof, wherein: A is selected from monocyclic and bicyclic heteroaryl, which may independently substituted by alkyl or amino; B is selected from alkyl, heteroalkyl, alkyl-amino, aryl, heteroaryl, cycloalkyl, heterocyclyl and alkylene, wherein said groups may independently be substituted by alkyl; D is selected from aryl-amino, heteroaryl-amino, cycloalkyl-amino, heterocyclyl, heterocyclyl-amino, urea, thioamide, thiourea, sulfonamide, sulfoximine and sulfamoyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups may independently be substituted; and E is selected from aryl, heteroaryl, cycloalkyl, heterocyclyl, wherein said aryl, heteroaryl, cycloalkyl and heterocyclyl groups may independently be substituted. The compounds of formula (I) are inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5).
    Type: Application
    Filed: April 3, 2018
    Publication date: December 3, 2020
    Inventors: Ulrich HEISER, Torsten HOFFMANN, Ingeborg LUES, Antje MEYER
  • Patent number: 9968647
    Abstract: The invention provides novel compounds and conjugates of these compounds useful for the delivery of biologically active substances. Further novel design criteria for chemically stabilized siRNA particular useful when covalently attached to a delivery polymer to achieve in vivo mRNA knock down are disclosed therein.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: May 15, 2018
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Kerstin Jahn-Hofmann, Eric A. Kitas, David L. Lewis, Peter Mohr, Hans Martin Mueller, Guenther Ott, Ingo Roehl, David B. Rozema
  • Publication number: 20170363645
    Abstract: The invention relates to a highly sensitive method for the detection of pGlu-Abeta (pGlu-A?) peptides and the use of this method in the diagnosis of neurodegenerative diseases, such as Alzheimer's disease and Mild Cognitive Impairment. The invention further concerns a novel method for monitoring the effectiveness of a treatment of neurode-generative diseases by monitoring changes in the level of pGlu-A? peptides.
    Type: Application
    Filed: December 18, 2015
    Publication date: December 21, 2017
    Inventors: Martin Kleinschmidt, Torsten Hoffmann, Jens-Ulrich Rahfeld, Stephan Schilling, Beena Punnamoottil, Michael Adler
  • Patent number: 9796756
    Abstract: The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to cell in vivo. The pharmacokinetic modulator improve in vivo targeting compared to the targeting ligand alone. Targeting ligand-pharmacokinetic modulator targeting moiety targeted RNAi polynucleotides can be administered in vivo alone or together with co-targeted delivery polymers.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: October 24, 2017
    Assignee: Arrowhead Pharmaceuticals, Inc.
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Eric A Kitas, Peter Mohr, Ingo Roehl, Linda Valis, David B Rozema, David L Lewis, Darren H Wakefield
  • Patent number: 9650362
    Abstract: The invention relates to novel pyrrolidine derivatives of formula (I): wherein R1, R2 and R3 are as defined herein, as inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5). QC catalyzes the intramolecular cyclization of N-terminal glutamine residues into pyroglutamic acid (5-oxo-prolyl, pGlu*) under liberation of ammonia and the intramolecular cyclization of N-terminal glutamate residues into pyroglutamic acid under liberation of water.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 16, 2017
    Assignee: PROBIODRUG AG
    Inventors: Ulrich Heiser, Daniel Ramsbeck, Robert Sommer, Antje Meyer, Torsten Hoffmann, Livia Boehme, Hans-Ulrich Demuth
  • Publication number: 20170022505
    Abstract: The invention provides novel compounds and conjugates of these compounds useful for the delivery of biologically active substances. Further novel design criteria for chemically stabilized siRNA particular useful when covalently attached to a delivery polymer to achieve in vivo mRNA knock down are disclosed therein.
    Type: Application
    Filed: April 4, 2016
    Publication date: January 26, 2017
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Kerstin Jahn-Hofmann, Eric A. Kitas, David L. Lewis, Peter Mohr, Hans Martin Mueller, Guenther Ott, Ingo Roehl, David B. Rozema
  • Patent number: 9462793
    Abstract: The present invention provides a knock-out non-human animal, in particular a mouse carrying a Qpct knock-out mutation. The present invention additionally provides the respective cells and cell lines and methods and compositions for evaluating agents that affect Qpct, for use in compositions for the treatment of Qpct-related diseases.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 11, 2016
    Assignee: PROBIODRUG AG
    Inventors: Stephan Schilling, Torsten Hoffmann, Hans-Ulrich Demuth
  • Publication number: 20160102120
    Abstract: The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to cell in vivo. The pharmacokinetic modulator improve in vivo targeting compared to the targeting ligand alone. Targeting ligand-pharmacokinetic modulator targeting moiety targeted RNAi polynucleotides can be administered in vivo alone or together with co-targeted delivery polymers.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Eric A Kitas, Peter Mohr, Ingo Roehl, Linda Valis, David B Rozema, David L Lewis, Darren H Wakefield
  • Patent number: 9301990
    Abstract: The invention provides novel compounds and conjugates of these compounds useful for the delivery of biologically active substances. Further novel design criteria for chemically stabilized siRNA particular useful when covalently attached to a delivery polymer to achieve in vivo mRNA knock down are disclosed therein.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: April 5, 2016
    Assignee: HOFFMANN-LA ROCHE, INC.
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Kerstin Jahn-Hofmann, Eric A. Kitas, David L. Lewis, Peter Mohr, Hans Martin Mueller, Guenther Ott, Ingo Roehl, David B. Rozema
  • Publication number: 20160039795
    Abstract: The invention relates to novel pyrrolidine derivatives of formula (I): wherein R1, R2 and R3 are as defined herein, as inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5). QC catalyzes the intramolecular cyclization of N-terminal glutamine residues into pyroglutamic acid (5-oxo-prolyl, pGlu*) under liberation of ammonia and the intramolecular cyclization of N-terminal glutamate residues into pyroglutamic acid under liberation of water.
    Type: Application
    Filed: September 23, 2015
    Publication date: February 11, 2016
    Inventors: Ulrich Heiser, Daniel Ramsbeck, Robert Sommer, Antje Meyer, Torsten Hoffmann, Livia Boehme, Hans-Ulrich Demuth
  • Patent number: 9249179
    Abstract: The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to cell in vivo. The pharmacokinetic modulator improve in vivo targeting compared to the targeting ligand alone. Targeting ligand-pharmacokinetic modulator targeting moiety targeted RNAi polynucleotides can be administered in vivo alone or together with co-targeted delivery polymers.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 2, 2016
    Assignee: Arrowhead Madison Inc.
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Eric A. Kitas, Peter Mohr, Ingo Roehl, Linda Valis, David B. Rozema, David L. Lewis, Darren H. Wakefield
  • Patent number: 9198947
    Abstract: The invention provides use of novel compounds for delivery of nucleic acids, and conjugates of these compounds with nucleic acids. Further novel design criteria for chemically stabilized siRNA particular useful when covalently attached to said compounds and co-administered with a delivery polymer to achieve mRNA knock down in vivo are disclosed therein.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: December 1, 2015
    Assignee: HOFFMANN-LA ROCHE INC.
    Inventors: Philipp Hadwiger, Torsten Hoffmann, Kerstin Jahn-Hofmann, Eric A. Kitas, David L. Lewis, Peter Mohr, Hans Martin Mueller, Guenther Ott, Ingo Roehl, David B. Rozema
  • Patent number: 9181233
    Abstract: The invention relates to novel heterocyclic derivatives as inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5). QC catalyzes the intramolecular cyclization of N-terminal glutamine residues into pyroglutamic acid (5-oxo-prolyl, pGlu*) under liberation of ammonia and the intramolecular cyclization of N-terminal glutamate residues into pyroglutamic acid under liberation of water.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 10, 2015
    Assignee: PROBIODRUG AG
    Inventors: Ulrich Heiser, Daniel Ramsbeck, Torsten Hoffmann, Livia Boehme, Hans-Ulrich Demuth
  • Patent number: 9173885
    Abstract: The invention relates to novel pyrrolidine derivatives of formula (I): wherein R1, R2 and R3 are as defined herein, as inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5). QC catalyzes the intramolecular cyclization of N-terminal glutamine residues into pyroglutamic acid (5-oxo-prolyl, pGlu*) under liberation of ammonia and the intramolecular cyclization of N-terminal glutamate residues into pyroglutamic acid under liberation of water.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: November 3, 2015
    Assignee: PROBIODRUG AG
    Inventors: Ulrich Heiser, Daniel Ramsbeck, Robert Sommer, Antje Meyer, Torsten Hoffmann, Livia Boehme, Hans-Ulrich Demuth
  • Patent number: 9107957
    Abstract: The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted melittin delivery peptides. Delivery peptides provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery peptides.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: August 18, 2015
    Assignee: Arrowhead Madison Inc.
    Inventors: David B Rozema, David L Lewis, Darren Wakefield, Eric Kitas, Philipp Hadwiger, Jon Wolff, Ingo Röhl, Peter Mohr, Torsten Hoffmann, Kerstin Jahn-Hofmann, Hans Martin Mueller, Günther Ott, Andrei V Blokhin, Jonathan D Benson, Jeffrey C Carlson
  • Patent number: 9011919
    Abstract: The present invention is directed compositions for targeted delivery of RNA interference (RNAi) polynucleotides to hepatocytes in vivo. Targeted RNAi polynucleotides are administered together with co-targeted delivery polymers. Delivery polymers provide membrane penetration function for movement of the RNAi polynucleotides from outside the cell to inside the cell. Reversible modification provides physiological responsiveness to the delivery polymers.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 21, 2015
    Assignee: Arrowhead Madison Inc.
    Inventors: David B. Rozema, David L. Lewis, Darren H. Wakefield, Torsten Hoffmann, Eric Kitas, Peter Mohr, Philipp Hadwiger, Wilma Thuer, Linda Valis
  • Publication number: 20150072006
    Abstract: The invention relates to drug preparations with controlled active ingredient released in the form of microtablets which contain, as active ingredient, flupirtin or one of its physiologically compatible salts, and to processes for their production.
    Type: Application
    Filed: March 1, 2013
    Publication date: March 12, 2015
    Inventors: Katrin Moschner, Torsten Hoffmann, Mario Weingart, Annegret Hildebrand-Cyrener