Patents by Inventor Torsten Muller-Stach

Torsten Muller-Stach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9044734
    Abstract: The present invention relates to a layered diesel oxidation catalyst (DOC) comprising: a) a carrier substrate; b) a diesel oxidation catalytic material comprising b1) a first layer located on the carrier substrate, the first layer comprising palladium impregnated on a support material comprising ceria in an amount of at least 45 weight-% based on the total weight of the support material, and optionally comprising platinum; b2) a second layer located on the first layer, the second layer comprising palladium and platinum each impregnated on a support material comprising a metal oxide; wherein the platinum to palladium weight ratio of the first layer is lower than the platinum to palladium weight ratio of the second layer.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: June 2, 2015
    Assignees: BASF SE, BASF CORPORATION
    Inventors: Gerd Grubert, Torsten Neubauer, Alfred Punke, Marcus Hilgendorff, Torsten Müller-Stach, Olga Gerlach, Xinyi Wei, Jeffrey Hoke, Shiang Sung, Stanley Roth
  • Patent number: 8858904
    Abstract: Described is a catalyzed soot filter wherein the inlet coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the outlet coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the outlet coating is lower than the Pt concentration in the inlet coating and wherein the weight ratio of Pt:Pd in the outlet coating is in the range of from 0:1 to 2:1; and wherein the inlet coating and the outlet coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.5 to 1.5, calculated as ratio of the loading of the inlet coating (in g/inch3 (g/(2.54 cm)3)):loading of the outlet coating (in g/inch3 (g/(2.54 cm)3)). Systems include such catalyzed soot filters, methods of diesel engine exhaust gas treatment and methods of manufacturing catalyzed soot filters are also described.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: October 14, 2014
    Assignee: BASF Corporation
    Inventors: Alfred Helmut Punke, Gerd Grubert, Yuejin Li, Ruediger Wolff, Stanley Roth, Torsten Müller-Stach, Attilio Siani, Kenneth Voss, Torsten Neubauer
  • Patent number: 8524182
    Abstract: Disclosed is a catalyzed soot filter with layered design wherein the first coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the second coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the second coating is lower than the Pt concentration in the first coating, and wherein the weight ratio of Pt:Pd in the second coating is in the range of from 1:1 to 0:1; and wherein the first coating and the second coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.25 to 3, calculated as ratio of the loading of the first coating (in g/inch3 (g/(2.54 cm)3)): loading of the second coating (in g/inch3 (g/(2.54 cm)3)).
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 3, 2013
    Assignees: BASF SE, BASF Corporation
    Inventors: Gerd Grubert, Alfred Punke, Torsten Neubauer, Ruediger Wolff, Stanley Roth, Yuejin Li, Torsten Müller-Stach, Marcus Hilgendorff
  • Publication number: 20120288427
    Abstract: Disclosed is a catalyzed soot filter with layered design wherein the first coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the second coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the second coating is lower than the Pt concentration in the first coating, and wherein the weight ratio of Pt:Pd in the second coating is in the range of from 1:1 to 0:1; and wherein the first coating and the second coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.25 to 3, calculated as ratio of the loading of the first coating (in g/inch3 (g/(2.54 cm)3)): loading of the second coating (in g/inch3 (g/(2.54 cm)3)).
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicants: BASF Corporation, BASF SE
    Inventors: Gerd Grubert, Alfred Punke, Torsten Neubauer, Ruediger Wolff, Stanley Roth, Yuejin Li, Torsten Müller-Stach, Marcus Hilgendorff
  • Publication number: 20120077669
    Abstract: Described is a process for the preparation of a catalyst comprising the steps of: (i) providing one or more support materials; (ii) providing one or more polymers on the support material; and (iii) providing one or more metals on the one or more supported polymers; wherein in step (ii) the one or more polymers do not comprise cross-linked polymers and/or polymers which have been reacted with a cross-linking agent. Also described is a catalyst obtained or obtainable according to said process, as well as the use of the catalyst, in particular in a method for the treatment of automobile engine exhaust gas.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 29, 2012
    Applicants: BASF Corporation, BASF SE
    Inventors: Torsten Müller-Stach, Attilio Siani, Torsten Neubauer, Xinyi Wei
  • Publication number: 20110305612
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Applicant: BASF SE
    Inventors: Torsten Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Publication number: 20110033353
    Abstract: The present invention relates to a process for preparing a catalyst, at least comprising the steps of adding a protecting agent to an aqueous solution of a metal precursor to give a mixture (M1), adding a reducing agent to mixture (M1) to give a mixture (M2), adding a support material to mixture (M2) to give a mixture (M3), adjusting the pH of mixture (M3), and separating the solid and liquid phase of mixture (M3). Furthermore, the present invention relates to the catalyst as such and its use as diesel oxidation catalyst.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 10, 2011
    Applicant: BASF Corporation
    Inventors: Attilio Siani, Torsten Muller-Stach, Torsten Neubauer, Xinyi Wei