Patents by Inventor Torsten Schultze

Torsten Schultze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11876659
    Abstract: A data communication method in which input digital data is received and encoded into an encoded waveform having zero crossings representative of the input digital data. The encoding includes generating the encoded waveform based upon a continuous piecewise function having sinusoidal components. The continuous piecewise function may be used in generating a plurality of symbol waveforms, each of which occupies a period of the encoded waveform and represents bits of the input digital data. The plurality of symbol waveforms are defined so that a value of a phase offset used in the continuous piecewise function is different for each of the plurality of symbol waveforms, thereby resulting in each symbol waveform having a different zero crossing. An encoded analog waveform is generated from a representation of the encoded waveform and transmitted to a receiver.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: January 16, 2024
    Assignee: TeraWave, LLC
    Inventor: Torsten Schultze
  • Publication number: 20230318888
    Abstract: A system and method for data communication using amplitude-encoded sinusoids. The method includes encoding the input digital data using a plurality of symbol waveforms where each of the plurality of symbol waveforms occupies a period of a composite encoded waveform and represents at least one bit of the input digital data. A first symbol waveform of the plurality of symbol waveforms is defined by a sinusoid of a first amplitude and a second symbol waveform is defined by a sinusoid of a second amplitude different from the first amplitude. The method includes generating an encoded analog waveform from a representation of the composite encoded waveform.
    Type: Application
    Filed: March 2, 2023
    Publication date: October 5, 2023
    Inventors: Torsten Schultze, Alvie Smith
  • Publication number: 20220173948
    Abstract: A data communication method in which input digital data is received and encoded into an encoded waveform having zero crossings representative of the input digital data. The encoding includes generating the encoded waveform based upon a continuous piecewise function having sinusoidal components. The continuous piecewise function may be used in generating a plurality of symbol waveforms, each of which occupies a period of the encoded waveform and represents bits of the input digital data. The plurality of symbol waveforms are defined so that a value of a phase offset used in the continuous piecewise function is different for each of the plurality of symbol waveforms, thereby resulting in each symbol waveform having a different zero crossing. An encoded analog waveform is generated from a representation of the encoded waveform and transmitted to a receiver.
    Type: Application
    Filed: January 7, 2022
    Publication date: June 2, 2022
    Inventor: Torsten SCHULTZE
  • Patent number: 11228474
    Abstract: A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: January 18, 2022
    Assignee: TeraWave, LLC
    Inventor: Torsten Schultze
  • Publication number: 20200382355
    Abstract: A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventor: Torsten Schultze
  • Patent number: 10791014
    Abstract: A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 29, 2020
    Assignee: TeraWave, LLC
    Inventor: Torsten Schultze
  • Patent number: 10764101
    Abstract: A system and method for waveform modulation includes encoding input digital data at selected phase angles of an unmodulated sinusoidal waveform. The encoding includes selectively reducing a power of the unmodulated sinusoidal waveform at the selected phase angles in accordance with bit values of the input digital data so as to respectively define first, second, third and fourth data notches in the modulated sinusoidal waveform. An encoded analog waveform is then generated from a digital representation of the modulated sinusoidal waveform. The encoding is performed so that energies associated with the first and third data notches are balanced and energies associated with second and fourth data notches are also balanced. Each of the energies corresponds to a cumulative power difference between a power of the unmodulated sinusoidal waveform and a power of the modulated sinusoidal waveform over a phase angle range subtended by one of the data notches.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 1, 2020
    Inventor: Torsten Schultze
  • Patent number: 10749723
    Abstract: A system and method for narrowband sinewave modulation. The system includes an input buffer for storing input digital data and a sub-periodic modulator for encoding the input digital data in a periodic waveform. The sub-periodic modulator encodes one or more bit values of the input digital data within each period of the periodic waveform. One or more digital-to-analog converters generate an encoded analog waveform from a digital representation of the periodic waveform wherein the encoded analog waveform is of a frequency f and a power P. The encoding is performed by the sub-periodic modulator such that any signal of frequency f? resulting from the encoding is of a power P? at least 50 dB less than power P, where f? is offset from f by more than 25 Hz.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: August 18, 2020
    Inventor: Torsten Schultze
  • Patent number: 10666481
    Abstract: A data communications system and method having high spectral efficiency. The method includes encoding input digital data using a plurality of symbol waveforms. Each symbol waveform occupies a period of a composite encoded waveform and represents one or more bits of the input digital data. Each symbol waveform has a first elliptical segment and a second elliptical segment of opposite polarity. The encoding includes defining each symbol waveform so that (i) a zero crossing from the first elliptical segment to the second elliptical segment of the symbol waveform is different for each of the symbol waveforms, and (ii) an energy of the first elliptical segment of the symbol waveform is substantially equal to an energy of the second elliptical segment of the symbol waveform. An encoded analog waveform is generated, using a digital-to-analog converter, from a digital representation of the composite encoded waveform.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 26, 2020
    Inventor: Torsten Schultze
  • Patent number: 10659269
    Abstract: A system and method for waveform modulation includes encoding input digital data at selected phase angles of an unmodulated sinusoidal waveform. The encoding includes selectively reducing a power of the unmodulated sinusoidal waveform at the selected phase angles in accordance with bit values of the input digital data so as to respectively define first, second, third and fourth data notches in the modulated sinusoidal waveform. An encoded analog waveform is then generated from a digital representation of the modulated sinusoidal waveform. The encoding is performed so that energies associated with the first and third data notches are balanced and energies associated with second and fourth data notches are also balanced. Each of the energies corresponds to a cumulative power difference between a power of the unmodulated sinusoidal waveform and a power of the modulated sinusoidal waveform over a phase angle range subtended by one of the data notches.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 19, 2020
    Inventor: Torsten Schultze
  • Patent number: 10530624
    Abstract: A system and method for encoding multi-bit features into sinusoidal waveforms at selected phase angles. The method includes receiving input digital data and encoding the input digital data in a sinusoidal waveform by modulating the sinusoidal waveform at selected phase angles within a period of the sinusoidal waveform, thereby creating a modulated sinusoidal waveform. An encoded analog waveform is generated, using a digital-to-analog converter, from a digital representation of the modulated sinusoidal waveform. The modulating includes forming a first data notch at a first phase angle of the selected phase angles wherein the first data notch includes a first plurality of transition features and subtends a first phase angle range about the first phase angle, the first plurality of transition features being representative of a first plurality of bit values included within the input digital data.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 7, 2020
    Inventor: Torsten Schultze
  • Patent number: 10469299
    Abstract: A multi-carrier data communications system and method having high spectral efficiency. The method includes encoding input digital data at selected phase angles of a plurality of sinusoidal waveforms to create a plurality of modulated sinusoidal waveforms. An output analog waveform is generated where the output analog waveform includes a plurality of encoded analog communication signals corresponding to a plurality of digital representations of the plurality of modulated sinusoidal waveforms. The encoding is performed so that adjacent ones of the plurality of modulated sinusoidal waveforms are separated in frequency by less than 15 Hz and any sideband included within the output analog waveform is of a power at least 50 dB below a power of the encoded analog communication signal associated with the sideband.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: November 5, 2019
    Inventor: Torsten Schultze
  • Patent number: 10397030
    Abstract: A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: August 27, 2019
    Inventor: Torsten Schultze
  • Publication number: 20190173705
    Abstract: A system and method for waveform modulation includes encoding input digital data at selected phase angles of an unmodulated sinusoidal waveform. The encoding includes selectively reducing a power of the unmodulated sinusoidal waveform at the selected phase angles in accordance with bit values of the input digital data so as to respectively define first, second, third and fourth data notches in the modulated sinusoidal waveform. An encoded analog waveform is then generated from a digital representation of the modulated sinusoidal waveform. The encoding is performed so that energies associated with the first and third data notches are balanced and energies associated with second and fourth data notches are also balanced. Each of the energies corresponds to a cumulative power difference between a power of the unmodulated sinusoidal waveform and a power of the modulated sinusoidal waveform over a phase angle range subtended by one of the data notches.
    Type: Application
    Filed: January 31, 2019
    Publication date: June 6, 2019
    Inventor: Torsten Schultze
  • Publication number: 20190165973
    Abstract: A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 30, 2019
    Inventor: Torsten Schultze
  • Publication number: 20190140873
    Abstract: A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 9, 2019
    Inventor: Torsten Schultze
  • Publication number: 20190140882
    Abstract: A system and method for narrowband sinewave modulation. The system includes an input buffer for storing input digital data and a sub-periodic modulator for encoding the input digital data in a periodic waveform. The sub-periodic modulator encodes one or more bit values of the input digital data within each period of the periodic waveform. One or more digital-to-analog converters generate an encoded analog waveform from a digital representation of the periodic waveform wherein the encoded analog waveform is of a frequency f and a power P. The encoding is performed by the sub-periodic modulator such that any signal of frequency f? resulting from the encoding is of a power P? at least 50 dB less than power P, where f? is offset from f by more than 25 Hz.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 9, 2019
    Inventor: Torsten Schultze
  • Publication number: 20190132175
    Abstract: A multi-carrier data communications system and method having high spectral efficiency. The method includes encoding input digital data at selected phase angles of a plurality of sinusoidal waveforms to create a plurality of modulated sinusoidal waveforms. An output analog waveform is generated where the output analog waveform includes a plurality of encoded analog communication signals corresponding to a plurality of digital representations of the plurality of modulated sinusoidal waveforms. The encoding is performed so that adjacent ones of the plurality of modulated sinusoidal waveforms are separated in frequency by less than 15 Hz and any sideband included within the output analog waveform is of a power at least 50 dB below a power of the encoded analog communication signal associated with the sideband.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 2, 2019
    Inventor: Torsten Schultze
  • Publication number: 20190132167
    Abstract: A system and method for encoding multi-bit features into sinusoidal waveforms at selected phase angles. The method includes receiving input digital data and encoding the input digital data in a sinusoidal waveform by modulating the sinusoidal waveform at selected phase angles within a period of the sinusoidal waveform, thereby creating a modulated sinusoidal waveform. An encoded analog waveform is generated, using a digital-to-analog converter, from a digital representation of the modulated sinusoidal waveform. The modulating includes forming a first data notch at a first phase angle of the selected phase angles wherein the first data notch includes a first plurality of transition features and subtends a first phase angle range about the first phase angle, the first plurality of transition features being representative of a first plurality of bit values included within the input digital data.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 2, 2019
    Inventor: Torsten Schultze
  • Publication number: 20190132174
    Abstract: A system and method for waveform modulation includes encoding input digital data at selected phase angles of an unmodulated sinusoidal waveform. The encoding includes selectively reducing a power of the unmodulated sinusoidal waveform at the selected phase angles in accordance with bit values of the input digital data so as to respectively define first, second, third and fourth data notches in the modulated sinusoidal waveform. An encoded analog waveform is then generated from a digital representation of the modulated sinusoidal waveform. The encoding is performed so that energies associated with the first and third data notches are balanced and energies associated with second and fourth data notches are also balanced. Each of the energies corresponds to a cumulative power difference between a power of the unmodulated sinusoidal waveform and a power of the modulated sinusoidal waveform over a phase angle range subtended by one of the data notches.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 2, 2019
    Inventor: Torsten Schultze