Patents by Inventor Toru Hirohata

Toru Hirohata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925046
    Abstract: Provided is a light-emitting device including an organic light-emitting element and a control unit that controls the organic light-emitting element. The organic light-emitting element includes a first electrode, a second electrode, and an organic light-emitting layer which is disposed between the first electrode and the second electrode and in which separation of charges occurs due to incidence of excited light. The control unit changes a potential difference between the first electrode and the second electrode so that recoupling of the charges occurs, in a second period after passage of a delay period from a first period in which the excited light is incident to the organic light-emitting layer.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: March 5, 2024
    Assignees: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, HAMAMATSU PHOTONICS K.K.
    Inventors: Chihaya Adachi, Hajime Nakanotani, Takahiko Yamanaka, Shigeo Hara, Toru Hirohata
  • Patent number: 11444248
    Abstract: An organic electro-luminescent element having a luminescence peak in a near-infrared range, comprising a positive electrode, a negative electrode, and at least one organic layer including a luminescent layer located between the positive electrode and the negative electrode, wherein the luminescent layer comprises a host material, a delayed fluorescent material and a luminescent material, wherein each of the delayed fluorescent material and the luminescent material have a structure with two or three benzene rings bonded to an N atom.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 13, 2022
    Inventors: Chihaya Adachi, Hajime Nakanotani, Takahiko Yamanaka, Shigeo Hara, Toru Hirohata
  • Publication number: 20210036256
    Abstract: Provided is a light-emitting device including an organic light-emitting element and a control unit that controls the organic light-emitting element. The organic light-emitting element includes a first electrode, a second electrode, and an organic light-emitting layer which is disposed between the first electrode and the second electrode and in which separation of charges occurs due to incidence of excited light. The control unit changes a potential difference between the first electrode and the second electrode so that recoupling of the charges occurs, in a second period after passage of a delay period from a first period in which the excited light is incident to the organic light-emitting layer.
    Type: Application
    Filed: July 29, 2020
    Publication date: February 4, 2021
    Applicants: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, HAMAMATSU PHOTONICS K.K.
    Inventors: Chihaya ADACHI, Hajime NAKANOTANI, Takahiko YAMANAKA, Shigeo HARA, Toru HIROHATA
  • Publication number: 20200395501
    Abstract: Provided is a superluminescent diode including an optical waveguide body configured as a double heterostructure including an active layer and a first clad layer and a second clad layer interposing the active layer. When a direction perpendicular to both an optical waveguide direction of the optical waveguide body and a facing direction of the first clad layer and the second clad layer is set as a width direction, the active layer is provided with a limitation region extending along the optical waveguide direction and partitioning the active layer in the width direction. Carriers are less likely to be generated in the limitation region than in a region other than the limitation region in the active layer.
    Type: Application
    Filed: November 29, 2018
    Publication date: December 17, 2020
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Masamichi YAMANISHI, Toru HIROHATA, Kazunori TANAKA, Kazuue FUJITA, Akira HIGUCHI
  • Patent number: 10840406
    Abstract: An optical semiconductor element includes: an optical waveguide body; a first electrode that is disposed on the second clad layer; a second electrode that is disposed on a second clad layer on one side of the first electrode in a light guiding direction of the optical waveguide body; a third electrode that is disposed on the second clad layer on the other side of the first electrode in the light guiding direction; and at least one fourth electrode that faces the first electrode, the second electrode, and the third electrode with the optical waveguide body interposed therebetween. The optical waveguide body includes a first separation region that electrically separates a first region under the first electrode from a second region under the second electrode and a second separation region that electrically separates the first region under the first electrode and a third region under the third electrode.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: November 17, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Masamichi Yamanishi, Akira Higuchi, Toru Hirohata, Kazunori Tanaka, Kazuue Fujita, Yasufumi Takagi, Yuta Aoki, Satoru Okawara
  • Patent number: 10238290
    Abstract: With a probe 2 in which an end of the organic photoelectric-conversion layer 23 on a projection optical path 10 side is covered by an upper electrode 24 having a light-blocking effect, light passing through the projection optical path 10 from a light source can be prevented from directly entering the organic photoelectric-conversion layer 23.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: March 26, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiko Yamanaka, Shigeo Hara, Toru Hirohata, Takashi Watanabe
  • Patent number: 10228328
    Abstract: An organic EL element having a luminescence peak in a near-infrared range comprises a positive electrode, a negative electrode, and at least one organic layer including a luminescent layer located between the positive electrode and the negative electrode. The luminescent layer comprises a host material, a delayed fluorescent material and a luminescent material. The LUMO and HOMO energy levels of the delayed fluorescent material and the luminescent material, the absorption spectrum of the luminescent material, and the emission spectrum of the delayed fluorescent material satisfy predetermined relationships.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: March 12, 2019
    Assignees: Kyushu University, National University Corporation, HAMAMATSU PHOTONICS K.K.
    Inventors: Chihaya Adachi, Hajime Nakanotani, Takahiko Yamanaka, Shigeo Hara, Toru Hirohata
  • Patent number: 10132755
    Abstract: A SERS element 2 comprises a substrate 21 having a front face 21a; a fine structure part 24, formed on the front face 21a, having a plurality of pillars 27; a first conductor layer 31 formed on the front face 21a and fine structure part 24 so as to cover the front face 21a and fine structure part 24 continuously; and a second conductor layer 32 formed on the first conductor layer 31 so as to form a plurality of gaps G1, G2 for surface-enhanced Raman scattering; while the first and second conductor layers 31, 32 are constituted by the same material.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: November 20, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshihiro Maruyama, Katsumi Shibayama, Masashi Ito, Toru Hirohata, Hiroki Kamei
  • Publication number: 20180301591
    Abstract: An optical semiconductor element includes: an optical waveguide body; a first electrode that is disposed on a second clad layer; a second electrode that is disposed on the second clad layer on one side of the first electrode in a light guiding direction of the optical waveguide body; a third electrode that is disposed on the second clad layer on the other side of the first electrode in the light guiding direction; and at least one fourth electrode that faces the first electrode, the second electrode, and the third electrode with the optical waveguide body interposed therebetween. The optical waveguide body includes a first separation region that electrically separates a first region under the first electrode from a second region under the second electrode and a second separation region that electrically separates the first region under the first electrode and a third region under the third electrode.
    Type: Application
    Filed: February 23, 2018
    Publication date: October 18, 2018
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Masamichi YAMANISHI, Akira HIGUCHI, Toru HIROHATA, Kazunori TANAKA, Kazuue FUJITA, Yasufumi TAKAGI, Yuta AOKI, Satoru OKAWARA
  • Publication number: 20180149595
    Abstract: An organic EL element having a luminescence peak in a near-infrared range comprises a positive electrode, a negative electrode, and at least one organic layer including a luminescent layer located between the positive electrode and the negative electrode. The luminescent layer comprises a host material, a delayed fluorescent material and a luminescent material. The LUMO and HOMO energy levels of the delayed fluorescent material and the luminescent material, the absorption spectrum of the luminescent material, and the emission spectrum of the delayed fluorescent material satisfy predetermined relationships.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 31, 2018
    Applicants: Kyushu University, National University Corporation, HAMAMATSU PHOTONICS K.K.
    Inventors: Chihaya ADACHI, Hajime NAKANOTANI, Takahiko YAMANAKA, Shigeo HARA, Toru HIROHATA
  • Publication number: 20180151810
    Abstract: An organic electro-luminescent element having a luminescence peak in a near-infrared range, comprising a positive electrode, a negative electrode, and at least one organic layer including a luminescent layer located between the positive electrode and the negative electrode, wherein the luminescent layer comprises a host material, a delayed fluorescent material and a luminescent material, wherein each of the delayed fluorescent material and the luminescent material have a structure with two or three benzene rings bonded to an N atom.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 31, 2018
    Applicants: Kyushu University, National University Corporation, HAMAMATSU PHOTONICS K.K.
    Inventors: Chihaya ADACHI, Hajime NAKANOTANI, Takahiko YAMANAKA, Shigeo HARA, Toru HIROHATA
  • Patent number: 9976961
    Abstract: A SERS element comprises a substrate; a fine structure part formed on a front face of the substrate and having a plurality of pillars; and a conductor layer formed on the fine structure part and constituting an optical function part for generating surface-enhanced Raman scattering. The conductor layer has a base part formed along the front face of the substrate and a plurality of protrusions protruding from the base part at respective positions corresponding to the pillars. The base part and the protrusions form a plurality of gaps in the conductor layer, each of the gaps having an interstice gradually decreasing in the projecting direction of the pillar.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: May 22, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshihiro Maruyama, Katsumi Shibayama, Masashi Ito, Toru Hirohata, Hiroki Kamei
  • Patent number: 9874523
    Abstract: A SERS element comprises a substrate; a fine structure part formed on a front face of the substrate and having a plurality of pillars; and a conductor layer formed on the fine structure part and constituting an optical function part for generating surface-enhanced Raman scattering. The conductor layer has a base part formed along the front face of the substrate and a plurality of protrusions protruding from the base part at respective positions corresponding to the pillars. The base part and the protrusions form a plurality of gaps in the conductor layer, each of the gaps having an interstice gradually decreasing in a direction perpendicular to the projecting direction of the pillar.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: January 23, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshihiro Maruyama, Katsumi Shibayama, Masashi Ito, Toru Hirohata, Hiroki Kamei
  • Patent number: 9863883
    Abstract: A SERS element comprises a substrate having a front face; a fine structure part formed on the front face and having a plurality of pillars; and a conductor layer formed on the fine structure part and constituting an optical function part for generating surface-enhanced Raman scattering. The conductor layer has a base part formed along the front face and a plurality of protrusions protruding from the base part at respective positions corresponding to the pillars. The base part is formed with a plurality of grooves surrounding the respective pillars when seen in the projecting direction of the pillars, while an end part of the protrusion is located within the groove corresponding thereto.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: January 9, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Katsumi Shibayama, Masashi Ito, Takafumi Yokino, Masaki Hirose, Anna Yoshida, Kazuto Ofuji, Yoshihiro Maruyama, Takashi Kasahara, Toshimitsu Kawai, Toru Hirohata, Hiroki Kamei, Hiroki Oyama
  • Patent number: 9863884
    Abstract: A SERS element comprises a substrate having a front face; a fine structure part formed on the front face and having a plurality of pillars; and a conductor layer formed on the fine structure part and constituting an optical function part for generating surface-enhanced Raman scattering. The conductor layer has a base part formed along the front face and a plurality of protrusions protruding from the base part at respective positions corresponding to the pillars. The base part has a thickness greater than the height of the pillars.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: January 9, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Katsumi Shibayama, Masashi Ito, Takafumi Yokino, Masaki Hirose, Anna Yoshida, Kazuto Ofuji, Yoshihiro Maruyama, Takashi Kasahara, Toshimitsu Kawai, Toru Hirohata, Hiroki Kamei, Hiroki Oyama
  • Patent number: 9368661
    Abstract: A photodetector 1A comprises a multilayer structure 3 having a first layer 4 constituted by first metal or first semiconductor, a semiconductor structure layer 5 mounted on the first layer 4 and adapted to excite an electron by plasmon resonance, and a second layer 6 mounted on the semiconductor structure layer 5 and constituted by second metal or second semiconductor.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: June 14, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazutoshi Nakajima, Toru Hirohata, Minoru Niigaki, Wataru Akahori, Kazuue Fujita
  • Patent number: 9276144
    Abstract: A quantum cascade detector includes a semiconductor substrate, and an active layer formed by laminating unit laminate structures each having an absorption region with a first barrier layer to a second well layer and a transport region with a third barrier layer to an n-th well layer. A second absorption well layer has a layer thickness ½ or less of that of a first absorption well layer thickest in one period, and a coupling barrier layer has a layer thickness smaller than that of an exit barrier layer thickest in one period. The unit laminate structure has a detection lower level arising from a ground level in the first well layer, a detection upper level generated by coupling an excitation level in the first well layer and a ground level in the second well layer, and a transport level structure for electrons.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: March 1, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuue Fujita, Toru Hirohata, Tadataka Edamura, Tatsuo Dougakiuchi
  • Publication number: 20150276206
    Abstract: With a probe 2 in which an end of the organic photoelectric-conversion layer 23 on a projection optical path 10 side is covered by an upper electrode 24 having a light-blocking effect, light passing through the projection optical path 10 from a light source can be prevented from directly entering the organic photoelectric-conversion layer 23.
    Type: Application
    Filed: March 24, 2015
    Publication date: October 1, 2015
    Inventors: Takahiko YAMANAKA, Shigeo HARA, Toru HIROHATA, Takashi WATANABE
  • Publication number: 20150233832
    Abstract: A SERS element 2 comprises a substrate 21 having a front face 21a; a fine structure part 24, formed on the front face 21a, having a plurality of pillars 27; a first conductor layer 31 formed on the front face 21a and fine structure part 24 so as to cover the front face 21a and fine structure part 24 continuously; and a second conductor layer 32 formed on the first conductor layer 31 so as to form a plurality of gaps G1, G2 for surface-enhanced Raman scattering; while the first and second conductor layers 31, 32 are constituted by the same material.
    Type: Application
    Filed: August 9, 2013
    Publication date: August 20, 2015
    Inventors: Yoshihiro Maruyama, Katsumi Shibayama, Masashi Ito, Toru Hirohata, Hiroki Kamei
  • Publication number: 20150219562
    Abstract: A SERS element comprises a substrate having a front face; a fine structure part formed on the front face and having a plurality of pillars; and a conductor layer formed on the fine structure part and constituting an optical function part for generating surface-enhanced Raman scattering. The conductor layer has a base part formed along the front face and a plurality of protrusions protruding from the base part at respective positions corresponding to the pillars. The base part has a thickness greater than the height of the pillars.
    Type: Application
    Filed: August 9, 2013
    Publication date: August 6, 2015
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Katsumi Shibayama, Masashi Ito, Takafumi Yokino, Masaki Hirose, Anna Yoshida, Kazuto Ofuji, Yoshihiro Maruyama, Takashi Kasahara, Toshimitsu Kawai, Toru Hirohata, Hiroki Kamei, Hiroki Oyama