Patents by Inventor Toru Hoshi

Toru Hoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210172320
    Abstract: A turbine rotor blade according to at least one embodiment to be connected to a rotational shaft so as to be rotatable around an axis includes a hub having a hub surface inclined with respect to the axis in a cross-section along the axis; and a plurality of rotor blades disposed on the hub surface. In a throat portion where a blade-to-blade distance between two adjacent rotor blades is smallest, a value (Lt/r) obtained by dividing the blade-to-blade Lt at a given radial position by a distance r from the axis to the radial position is maximum at a position where a dimensionless span length is in a range of 0.2 to 0.65, assuming that the dimensionless span length is 0 at a position of a root end portion on a hub side and is 1 at a position of a tip end portion opposite to the hub side.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 10, 2021
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Takeru CHIBA, Toru HOSHI
  • Publication number: 20210123380
    Abstract: A turbine rotor blade according to at least one embodiment of the present invention is to be connected to a rotational shaft so as to be rotatable around an axis and includes: a hub having a hub surface inclined with respect to the axis in a cross-section along the axis; at least one rotor blade disposed on the hub surface; and a connection passage disposed inside the turbine rotor blade and connecting a first opening disposed in the at least one rotor blade and a second opening disposed downstream of the first opening in the turbine rotor blade.
    Type: Application
    Filed: January 11, 2018
    Publication date: April 29, 2021
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Takao YOKOYAMA, Toru HOSHI, Toyotaka YOSHIDA, Keigo SAKAMOTO
  • Patent number: 10907541
    Abstract: A turbine housing includes: a housing body which includes a turbine housing part housing a turbine wheel, an inlet section forming an inlet flow passage for guiding exhaust gas to the turbine housing part, an outlet section forming an outlet flow passage for discharging the exhaust gas from the turbine housing part, and a waste-gate flow passage which brings the inlet flow passage and the outlet flow passage into communication so as to bypass the turbine housing part; and a sleeve disposed along an inner wall surface of the housing body forming the waste gate flow passage, at least on a downstream side of the waste-gate flow passage of the housing body with respect to a flow direction of the exhaust gas.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: February 2, 2021
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Tsuyoshi Kitamura, Toyotaka Yoshida, Toru Hoshi, Motoki Ebisu
  • Patent number: 10907649
    Abstract: A turbine housing includes: a housing body which is configured to accommodate a turbine wheel and which includes an inlet section forming an inlet flow passage for guiding exhaust gas to the turbine wheel, and an outlet section forming an outlet flow passage for discharging the exhaust gas from the turbine wheel; and at least one sleeve disposed along an inner wall surface of at least one of the inlet section or the outlet section of the housing body. The at least one sleeve includes a plurality of sections divided along a flow direction of the exhaust gas.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: February 2, 2021
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Tsuyoshi Kitamura, Toyotaka Yoshida, Toru Hoshi, Motoki Ebisu
  • Publication number: 20200291847
    Abstract: A diffuser includes a connection section and a body section. The connection section extends from an outlet of turbine rotor blades. The body section is connected to an end of the connection section on a downstream side and has a larger flow passage sectional area than the connection section. The shape of the flow passage sectional surface of the connection section is formed into a circle at an outlet of the turbine rotor blades and is formed into an ellipse at an inlet of the body section. The shape of the flow passage sectional surface of the connection section is further formed to be gradually enlarged in a long-axis direction of the ellipse from the outlet of the turbine rotor blades toward the inlet of the body section.
    Type: Application
    Filed: December 7, 2017
    Publication date: September 17, 2020
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Toru HOSHI, Reiko TAKASHIMA, Takao YOKOYAMA
  • Patent number: 10731503
    Abstract: A turbocharger (10) comprising: a rotating shaft (14); a turbine wheel (12); a turbine housing (31); a scroll flowpath (34) having gas flowing therethrough that rotates and drives the turbine wheel (12); a nozzle flowpath (35) that guides gas radially inwards from the scroll flowpath (34) and supplies gas to the turbine wheel (12); and a vane (53) that adjusts the amount of gas introduced in the nozzle flowpath (35). The vane (53) comprises a guide section (60) that guides the gas flow (F) in the turbine wheel (12) radially inwards.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: August 4, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Toyotaka Yoshida, Toru Hoshi, Yosuke Dammoto, Yoji Akiyama
  • Publication number: 20200123966
    Abstract: A variable geometry turbocharger includes: a turbine rotor; and a variable nozzle mechanism for adjusting a flow of exhaust gas to the turbine rotor from a scroll flow passage formed on a radially outer side of the turbine rotor. The variable nozzle mechanism includes: a nozzle vane disposed in an exhaust gas flow passage for guiding the exhaust gas to the turbine rotor from the scroll flow passage; a support wall forming a flow passage wall on a first side of the exhaust gas flow passage with respect to an axial direction of the turbine rotor and supporting the nozzle vane rotatably in a cantilever fashion; and a non-support wall forming a flow passage wall on a second side of the exhaust gas flow passage with respect to the axial direction. Of an end surface of the nozzle vane on a side of the non-support wall, an edge portion on a side of a pressure surface includes a non-support-wall side linear portion formed to have a linear shape.
    Type: Application
    Filed: March 30, 2016
    Publication date: April 23, 2020
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Takao YOKOYAMA, Toru HOSHI, Masaki TOJO
  • Publication number: 20200116036
    Abstract: A fixed vane turbocharger includes: an impeller; a housing including, inside thereof, an impeller housing space which accommodates the impeller, a scroll flow passage formed on a radially outer side of the impeller, and a communication flow passage which brings the impeller housing space and the scroll flow passage into communication; and at least one fixed vane unit disposed in the communication flow passage and fixed to a portion of the housing on an inner side of the scroll flow passage with respect to a radial direction of the impeller. Each of the at least one fixed vane unit includes at least two vane portions and a coupling portion coupling the two vane portions, and is formed of a single sheet metal member.
    Type: Application
    Filed: March 30, 2016
    Publication date: April 16, 2020
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Takao YOKOYAMA, Toru HOSHI
  • Publication number: 20200088212
    Abstract: A turbine for a turbocharger includes: a turbine impeller coupled to a compressor impeller via a rotational shaft; a turbine casing disposed so as to cover the turbine impeller, the turbine casing including a scroll flow passage and a scroll outlet portion disposed on an inner side, in a radial direction, of the scroll flow passage, for guiding exhaust gas from the scroll flow passage to the turbine impeller; and a back-surface side member disposed so as to face a back surface of the turbine impeller. The back-surface side member includes a protruding portion disposed on an impeller facing surface which faces the back surface of the turbine impeller, the protruding portion protruding toward the back surface and extending in a circumferential direction.
    Type: Application
    Filed: August 10, 2017
    Publication date: March 19, 2020
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Toru HOSHI, Toyotaka YOSHIDA, Takao YOKOYAMA, Bipin GUPTA
  • Patent number: 10590838
    Abstract: A supercharger includes a first introduction part having a first flow channel; a second introduction part having a second flow channel; a chamber into which the exhaust gas is introduced; an outlet part having one or a plurality of outlet flow channels; and a valve member housed in the chamber. The chamber has a first introduction port that leads to the first flow channel, a second introduction port that leads to the second flow channel, and one or a plurality of outlet ports that lead to the outlet flow channel. A main circulation space is secured. The valve member is capable of opening or closing, and allows two or more opened ports among the first introduction port, the second introduction port, and the outlet port to communicate with each other through the main circulation space.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: March 17, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Mark Rankenberg, Maik Schram, Jochem Hooijer, Rogier Schimmel, Yosuke Dammoto, Motoki Ebisu, Toru Hoshi
  • Publication number: 20200040737
    Abstract: A turbine blade configured to be coupled to a rotational shaft and rotated around an axis includes: a hub having a hub surface which is inclined with respect to the axis in a cross section along the axis; a rotor blade disposed on the hub surface; and at least one rib formed on a blade surface of the rotor blade, the at least one rib extending in a direction which intersects with a span direction of the rotor blade in a meridional plane of the rotor blade.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 6, 2020
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Takao YOKOYAMA, Toru HOSHI, Toyotaka YOSHIDA
  • Publication number: 20190234304
    Abstract: A turbine housing includes: a housing body which includes a turbine housing part housing a turbine wheel, an inlet section forming an inlet flow passage for guiding exhaust gas to the turbine housing part, an outlet section forming an outlet flow passage for discharging the exhaust gas from the turbine housing part, and a waste-gate flow passage which brings the inlet flow passage and the outlet flow passage into communication so as to bypass the turbine housing part; and a sleeve disposed along an inner wall surface of the housing body forming the waste gate flow passage, at least on a downstream side of the waste-gate flow passage of the housing body with respect to a flow direction of the exhaust gas.
    Type: Application
    Filed: December 16, 2016
    Publication date: August 1, 2019
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Tsuyoshi KITAMURA, Toyotaka YOSHIDA, Toru HOSHI, Motoki EBISU
  • Publication number: 20190234422
    Abstract: A turbine housing includes: a housing body which is configured to accommodate a turbine wheel and which includes an inlet section forming an inlet flow passage for guiding exhaust gas to the turbine wheel, and an outlet section forming an outlet flow passage for discharging the exhaust gas from the turbine wheel; and at least one sleeve disposed along an inner wall surface of at least one of the inlet section or the outlet section of the housing body. The at least one sleeve includes a plurality of sections divided along a flow direction of the exhaust gas.
    Type: Application
    Filed: December 16, 2016
    Publication date: August 1, 2019
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Tsuyoshi KITAMURA, Toyotaka YOSHIDA, Toru HOSHI, Motoki EBISU
  • Publication number: 20190136694
    Abstract: A turbine wheel (12) is provided with: a disc (22) provided so as to be capable of rotating about a center axis (C); and a plurality of blades (23) provided to a disc surface (22f) at intervals in a circumferential direction, the blades (23) causing a gas guided in from radially outward leading edges (23f) to be expelled from trailing edges (23r) disposed on one side of each of the blades along the direction of the center axis (C). In each of the blades (23), in an area on one side along the direction of the center axis (C) including the trailing edge (23r), there is provided a concave surface (27) in which a positive-pressure surface (23p) on the rear side in a rotational direction (R) is recessed forward in the rotational direction (R), causing the gas to be dispersed entirely in the radial direction of the blade (23).
    Type: Application
    Filed: March 31, 2016
    Publication date: May 9, 2019
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Toyotaka YOSHIDA, Toru HOSHI, Yosuke DAMMOTO, Yoji AKIYAMA
  • Publication number: 20190101018
    Abstract: A turbocharger (10) comprising: a rotating shaft (14); a turbine wheel (12); a turbine housing (31); a scroll flowpath (34) having gas flowing therethrough that rotates and drives the turbine wheel (12); a nozzle flowpath (35) that guides gas radially inwards from the scroll flowpath (34) and supplies gas to the turbine wheel (12); and a vane (53) that adjusts the amount of gas introduced in the nozzle flowpath (35). The vane (53) comprises a guide section (60) that guides the gas flow (F) in the turbine wheel (12) radially inwards.
    Type: Application
    Filed: March 30, 2016
    Publication date: April 4, 2019
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Toyotaka YOSHIDA, Toru HOSHI, Yosuke DAMMOTO, Yoji AKIYAMA
  • Publication number: 20190048791
    Abstract: A supercharger includes a first introduction part having a first flow channel; a second introduction part having a second flow channel; a chamber into which the exhaust gas is introduced; an outlet part having one or a plurality of outlet flow channels; and a valve member housed in the chamber. The chamber has a first introduction port that leads to the first flow channel, a second introduction port that leads to the second flow channel, and one or a plurality of outlet ports that lead to the outlet flow channel. A main circulation space is secured. The valve member is capable of opening or closing, and allows two or more opened ports among the first introduction port, the second introduction port, and the outlet port to communicate with each other through the main circulation space.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 14, 2019
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Mark RANKENBERG, Maik SCHRAM, Jochem HOOIJER, Rogier SCHIMMEL, Yosuke DAMMOTO, Motoki EBISU, Toru HOSHI
  • Patent number: 10006355
    Abstract: An object is to provide a variable-geometry exhaust turbine whereby it is possible to prevent deformation and damage to a nozzle support under a high temperature. A variable-geometry exhaust turbine includes: a nozzle mount, a nozzle support including a first end portion joined to the first surface of the nozzle mount, a nozzle plate including the first surface joined to the second end portion of the nozzle support 6 and supported so as to face the nozzle mount at a distance, and the opposite second surface facing an exhaust—as channel through which exhaust gas flows, and a plurality of nozzle vanes supported rotatably between the nozzle mount and the nozzle plate. The nozzle support is capable of tilting along a radial direction so as to absorb a relative displacement in the radial direction between the nozzle mount and the nozzle plate due to thermal expansion.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 26, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Noriyuki Hayashi, Takamitsu Himeno, Takashi Arai, Yukihide Nagayo, Mitsuru Aiba, Takao Yokoyama, Toru Hoshi, Hiroyuki Arimizu, Toshio Sakon
  • Patent number: 9683445
    Abstract: An impeller for a centrifugal compressor is characterized in that a shroud side of a front edge 7a of a splitter blade 7 is disposed so as to be displaced toward a negative-pressure surface Sb of a full blade 5F from a position equidistant from the full blades 5R and 5F in a circumferential direction such that a blade-end leakage vortex generated during a high flow rate which occurs from a blade-end clearance between the tip of the full blade 5F and a shroud toward the portion of the front edge 7a of the splitter blade 7 gets over the front edge 7a of the splitter blade 7.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: June 20, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toru Hoshi, Isao Tomita, Kenichiro Iwakiri, Takashi Shiraishi
  • Patent number: 9638208
    Abstract: Provided is a centrifugal compressor including a first splitter blade 7 arranged nearer to a suction side Sb of a full blade 5F located upstream in a rotating direction of the compressor, and a second splitter blade 8 provided farther from the suction side Sb of the full blade 5F and being shorter than the first splitter blade 7. Leading edges 7a and 8a on the shroud side of the first splitter blade 7 and the second splitter blade 8 are offset from positions dividing the space between the full blades at equal intervals by the number of splitter blades therebetween toward the suction side Sb of the full blade.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 2, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Isao Tomita, Toru Hoshi
  • Patent number: 9587554
    Abstract: A twin-scroll turbocharger comprises front and rear scrolls, a scroll throat portion separating the scrolls, a rotor blade rotated by exhaust gas, and a turbine housing forming, with an outer circumferential portion of the rotor blade, the front scroll and the rear scroll, and including an inclined surface on which an extended line of the incline facing toward the scroll throat portion of the front scroll and an inlet of the rotor blade intersect at a position in a central portion of the inlet of the rotor blade, wherein the connection R at a crossing portion P where the inclined surface and an inner periphery surface of the turbine housing intersect has a shape such that the gap of a constant width a continues to the position of the inlet of the rotor blade.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: March 7, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toru Hoshi, Takao Yokoyama