Patents by Inventor Toru Inaguma

Toru Inaguma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11198918
    Abstract: The present invention has as its object to provide thickness 60 ?m or less ultra-thin stainless steel foil which secures high thickness precision and simultaneously secures plastic deformability and good elongation at break, that is, secures good press-formability (deep drawability). The present invention solves this problem by ultra-thin stainless steel foil which has three or more crystal grains in a thickness direction, has a recrystallization rate of 90% to 100%, and has a nitrogen concentration of a surface layer of 1.0 mass % or less. For this reason, there is provided a method of production of stainless steel foil comprising rolling stainless steel sheet, then performing final annealing and making a thickness 5 ?m to 60 ?m, wherein a rolling reduction ratio at rolling right before final annealing is 30% or more, a temperature of final annealing after rolling is 950° C. to 1050° C. in the case of austenitic stainless steel and 850° C. to 950° C.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: December 14, 2021
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Hiroto Unno, Shinichi Terashima, Toru Inaguma, Koichi Nose, Naoki Fujimoto, Naoya Sawaki, Shuji Nagasaki
  • Patent number: 10844457
    Abstract: The present invention provides a ferritic stainless steel foil high in stretch-expand formability and further small in anisotropy of deformation with respect to stretch-expand forming even with ultrathin steel foil with a thickness of 60 ?m or less. The ferritic stainless steel foil has a thickness of 5 ?m to 60 ?m, wherein a recrystallization rate of the stainless steel foil is 90% to 100%, and in an orientation distribution function obtained by analysis of a crystalline texture of the stainless steel foil, when a Euler angle ?2 is 45°±10°, at a plane expressed by a Euler angle ? of 53.4°±10°, a maximum peak strength ratio in peak strength ratios shown by orientations corresponding to a Euler angle ?1 is 25 or less, where the Euler angle ?1 is 0 to 90°. The ferritic stainless steel foil may be laminated with a resin film and is useful for producing a battery case.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: November 24, 2020
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Hiroto Unno, Naoya Sawaki, Naoki Fujimoto, Masahiro Fukuda, Tomohiro Uno, Toru Inaguma
  • Patent number: 10786974
    Abstract: The present invention provide a ferritic stainless steel foil having a high thickness precision even with a thickness 60 ?m or less ultrathin stainless steel foil and simultaneously having a plastic deformation ability and good elongation at break, that is, having a good press-formability (deep drawing ability). The present invention is a stainless steel foil having a thickness of 5 ?m to 60 ?m, wherein a recrystallization ratio of said stainless steel foil is 90% to 100%, a surface layer of said stainless steel foil has a nitrogen concentration of 1.0 mass % or less, three or more crystal grains are contained in the thickness direction of said stainless steel foil, an average crystal grain diameter “d” of said crystal grains is 1 ?m to 10 ?m, and, when said thickness is “t” (?m), an area ratio of crystal grains having a crystal grain diameter of t/3 (?m) or more is 20% or less.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: September 29, 2020
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Hiroto Unno, Naoya Sawaki, Naoki Fujimoto, Masahiro Fukuda, Tomohiro Uno, Toru Inaguma
  • Patent number: 10323294
    Abstract: Provided is an austenitic stainless steel foil that demonstrates a high degree of stretch formability and little deformation anisotropy with respect to stretch forming despite having a sheet thickness of 60 ?m or less. The austenitic stainless steel foil of the present invention has a sheet thickness of 5 ?m to 60 ?m, a recrystallization rate of 90% to 100%, and a texture in which the total of the area ratio of a crystal orientation in which the difference in orientation from the {112}<111> orientation is within 10°, the area ratio of a crystal orientation in which the difference in orientation from the {110}<112> orientation is within 10°, and the area ratio of a crystal orientation in which the difference in orientation from the {110}<001> orientation is within 10°, in a measuring field thereof, is 20% or less.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: June 18, 2019
    Assignee: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Hiroto Unno, Naoya Sawaki, Naoki Fujimoto, Masahiro Fukuda, Tomohiro Uno, Toru Inaguma
  • Publication number: 20180282834
    Abstract: The present invention provide a ferritic stainless steel foil high in stretch-expand formability and further small in anisotropy of deformation with respect to stretch-expand forming even with ultrathin steel foil with a thickness of 60 ?m or less. The present invention is a ferritic stainless steel foil having a thickness of 5 ?m to 60 ?m, wherein a recrystallization rate of said stainless steel foil is 90% to 100%, and in an orientation distribution function obtained by analysis of a crystalline texture of said stainless steel foil, when a Euler angle ?2 is 45°±10°, at the plane expressed by a Euler angle ? of 53.4°±10°, the maximum peak strength ratio in the peak strength ratios shown by orientations corresponding to the Euler angle ?1 is 25 or less, where the Euler angle ?1 is 0 to 90°.
    Type: Application
    Filed: August 16, 2016
    Publication date: October 4, 2018
    Applicant: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Hiroto UNNO, Naoya SAWAKI, Naoki FUJIMOTO, Masahiro FUKUDA, Tomohiro UNO, Toru INAGUMA
  • Publication number: 20180237882
    Abstract: Provided is an austenitic stainless steel foil that demonstrates a high degree of stretch formability and little deformation anisotropy with respect to stretch forming despite having a sheet thickness of 60 ?m or less. The austenitic stainless steel foil of the present invention has a sheet thickness of 5 ?m to 60 ?m, a recrystallization rate of 90% to 100%, and a texture in which the total of the area ratio of a crystal orientation in which the difference in orientation from the {112}<111> orientation is within 10°, the area ratio of a crystal orientation in which the difference in orientation from the {110}<112> orientation is within 10°, and the area ratio of a crystal orientation in which the difference in orientation from the {110}<001> orientation is within 10°, in a measuring field thereof, is 20% or less.
    Type: Application
    Filed: August 17, 2016
    Publication date: August 23, 2018
    Applicant: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Hiroto UNNO, Naoya SAWAKI, Naoki FUJIMOTO, Masahiro FUKUDA, Tomohiro UNO, Toru INAGUMA
  • Publication number: 20180229476
    Abstract: The present invention provide a ferritic stainless steel foil having a high thickness precision even with a thickness 60 ?m or less ultrathin stainless steel foil and simultaneously having a plastic deformation ability and good elongation at break, that is, having a good press-formability (deep drawing ability). The present invention is a stainless steel foil having a thickness of 5 ?m to 60 ?m, wherein a recrystallization ratio of said stainless steel foil is 90% to 100%, a surface layer of said stainless steel foil has a nitrogen concentration of 1.0 mass % or less, three or more crystal grains are contained in the thickness direction of said stainless steel foil, an average crystal grain diameter “d” of said crystal grains is 1 ?m to 10 ?m, and, when said thickness is “t” (?m), an area ratio of crystal grains having a crystal grain diameter of t/3 (?m) or more is 20% or less.
    Type: Application
    Filed: August 17, 2016
    Publication date: August 16, 2018
    Applicant: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Hiroto UNNO, Naoya SAWAKI, Naoki FUJIMOTO, Masahiro FUKUDA, Tomohiro UNO, Toru INAGUMA
  • Patent number: 9616411
    Abstract: The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an ?-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: April 11, 2017
    Assignee: NIPPON STEEL & SUMKIN MATERIALS CO., LTD.
    Inventors: Toru Inaguma, Takayuki Kobayashi, Hiroaki Sakamoto
  • Publication number: 20170009312
    Abstract: The present invention has as its object to provide thickness 60 ?m or less ultra-thin stainless steel foil which secures high thickness precision and simultaneously secures plastic deformability and good elongation at break, that is, secures good press-formability (deep drawability). The present invention solves this problem by ultra-thin stainless steel foil which has three or more crystal grains in a thickness direction, has a recrystallization rate of 90% to 100%, and has a nitrogen concentration of a surface layer of 1.0 mass % or less. For this reason, there is provided a method of production of stainless steel foil comprising rolling stainless steel sheet, then performing final annealing and making a thickness 5 ?m to 60 ?m, wherein a rolling reduction ratio at rolling right before final annealing is 30% or more, a temperature of final annealing after rolling is 950° C. to 1050° C. in the case of austenitic stainless steel and 850° C. to 950° C.
    Type: Application
    Filed: February 16, 2015
    Publication date: January 12, 2017
    Applicant: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Hiroto UNNO, Shinichi TERASHIMA, Toru INAGUMA, Koichi NOSE, Naoki FUJIMOTO, Naoya SAWAKI, Shuji NAGASAKI
  • Publication number: 20150217277
    Abstract: The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an ?-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
    Type: Application
    Filed: April 15, 2015
    Publication date: August 6, 2015
    Applicant: NIPPON STEEL & SUMIKIN MATERIALS CO, LTD.
    Inventors: Toru Inaguma, Takayuki Kobayashi, Hiroaki Sakamoto
  • Patent number: 9028625
    Abstract: The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an ?-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: May 12, 2015
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventors: Toru Inaguma, Takayuki Kobayashi, Hiroaki Sakamoto
  • Publication number: 20100108501
    Abstract: A method for efficiently manufacturing a large-area Mo-based target plate at a high yield is provided. In the manufacturing method, the condition of the content of a trace element and the rolling condition are used in combination to reduce the deformation resistance and to suppress the occurrence of cracks such as edge cracking. The method for manufacturing an Mo-based sputtering target by rolling an Mo-based ingot includes the steps of: manufacturing the Mo-based ingot in which the oxygen concentration is controlled to 10 ppm by mass or more and 1000 ppm by mass or less; and heating and rolling the Mo-based ingot at a rolling temperature of 600° C. or more and 950° C. or less.
    Type: Application
    Filed: January 11, 2008
    Publication date: May 6, 2010
    Inventors: Toru Inaguma, Hiroaki Sakamoto, Tadami Oishi, Shingo Izumi, Hajime Nakamura
  • Publication number: 20090022636
    Abstract: The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an ?-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
    Type: Application
    Filed: October 18, 2005
    Publication date: January 22, 2009
    Inventors: Toru Inaguma, Takayuki Kobayashi, Hiroaki Sakamoto
  • Patent number: 6073493
    Abstract: In a method of diagnosing the fatigue life of structural steelwork according to the present invention, a Barkhausen noise measurement is performed under the condition of 5 .mu.m.ltoreq.d.ltoreq.1 mm where d is the detection depth of Barkhausen noise, by using a magnetic head constituted by an air-core coil detection head and a magnetic excitation head obtained by winding a copper wire such as an enameled wire on a U-shaped core made of a soft magnetic material such as a silicon steel sheet or an amorphous magnetic material. The degree of fatigue damage of a target measurement portion is diagnosed using the root-mean-square (RMS) voltage or voltage amplitude value of the Barkhausen noise. According to this method, the degree of fatigue and degradation by stress and strain in the structural steelwork can be accurately diagnosed prior to development of cracking without any limitation on diagnostic locations.
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: June 13, 2000
    Assignee: Nippon Steel Corporation
    Inventors: Hiroaki Sakamoto, Toru Inaguma, Yasuhiro Nakata, Mitsuhiko Yazaki
  • Patent number: 5654511
    Abstract: A rail axial-force measuring method and an axial-force measurable rail which eliminate the effects of residual stresses existing in a rail and thus enables an axial force acting on the rail to be measured quickly and accurately are provided. The rail is provided with a stress sensing portion which is magnetized by a magnetizing head, and changes in the magnetization of the stress sensing portion are detected by a detection head as a voltage signal from which an axial force acting on the rail is measured. Preferably, the voltage signal is a Barkhausen noise signal and, also preferably, the stress sensing portion is constructed from a portion formed by first locally heating the rail into a .gamma.-phase region, and then causing cementite to precipitate by heat treatment at a temperature lower than the .gamma.-phase region. The axial-force measurable rail including the above-described stress sensing portion is also provided.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: August 5, 1997
    Assignee: Nippon Steel Corporation
    Inventors: Kazuo Sugino, Hiroaki Sakamoto, Toru Inaguma
  • Patent number: 5652394
    Abstract: A stress sensor, which, in use, is attached to a measuring object and generates Barkhausen signals, for measuring a stress applied to the object, wherein the Barkhausen signals have a reduced temperature dependence. The stress sensor is characterized by comprising a steel material having such a texture that a granular carbide comprising: element M wherein M represents at least one element selected from Fe, Al, B, Co, Cr, Mn, Mo, Nb, Ni, Si, Sn, Ti, U, V, W, and Zr; and C has been precipitated in the interior of ferrite grains. Preferably, the average grain diameter of the granular carbide precipitated in the texture is 0.05 to 1.0 .mu.m, and the standard deviation in grain size distribution of the granular carbide is 0.14 to 2.0 .mu.m. In another preferred embodiment, the average grain diameter of the granular carbide is more than 1.0 .mu.m and 3.0 .mu.m or less. Still preferably, the carbide is an M.sub.3 C compound.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: July 29, 1997
    Assignee: Nippon Steel Corporation
    Inventors: Kazuo Sugino, Hiroaki Sakamoto, Toru Inaguma
  • Patent number: 5565773
    Abstract: An arrangement of the magnetic detection and excitation head has an excitation head with a U-shaped excitation core of soft magnetic material forming two legs, each having an end plane facing a surface of a measured object, and an excitation coil wound on the core excitable by a low frequency current; and a detection head with a rod-shaped detection core of non-magnetic or soft magnetic material and a detection coil wound thereon. An end plane of the detection core which is to be close to the surface of the object, and the end planes of the two legs of the excitation core are arranged such that the end plane of the detection core is between the end planes of the two legs and all the end planes are substantially on a common flat plane.
    Type: Grant
    Filed: November 4, 1994
    Date of Patent: October 15, 1996
    Assignee: Nippon Steel Corporation
    Inventors: Toru Inaguma, Hiroaki Sakamoto
  • Patent number: 5201963
    Abstract: Rare earth magnets comprising 12 to 20 at % R (where R denotes rare earth elements including at least one selected from neodymium and praseodymium) and 2 to 10 at % boron, with the remainder being TM (where TM=Fe.sub.1-x Co.sub.x (0.ltoreq.x.ltoreq.0.4)) and unavoidable impurities, wherein 50 to 100 vol % of the magnet is formed of recrystallization grains of R.sub.2 Fe.sub.14 B intermetallic compound having a tetragonal crystal structure with an average grain size of 1 to 100 .mu.m and an induced anisotropy P of 0.1 or more (where P=(Br(.parallel.)-Br(.perp.))/(Br(.parallel.)+Br(.perp.)), Br(.parallel.) being residual magnetic flux density along the easy magnetization axis and Br(.perp.) being residual magnetic flux density perpendicular to the easy magnetization axis), and the method of producing the rare earth magnets.
    Type: Grant
    Filed: December 4, 1991
    Date of Patent: April 13, 1993
    Assignee: Nippon Steel Corporation
    Inventors: Toshio Mukai, Tatsuo Fujimoto, Toru Inaguma