Patents by Inventor Toshihiro Ando

Toshihiro Ando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087812
    Abstract: An electronic component includes a component body, a metal terminal, and a bonding material. The component body includes an element body and an external electrode. The metal terminal includes a first main surface and a second main surface, and a side surface. The bonding material electrically and physically connects the external electrode and the metal terminal. The metal terminal includes a first metal layer including the first main surface, a second metal layer including the second main surface, and a terminal body including the side surface. The terminal body is exposed at the side surface, and the first metal layer and the second metal layer are separated from each other on the side surface. Each of the first metal layer and the second metal layer includes a Ni plated layer. The terminal body includes Cu. The bonding material includes solder.
    Type: Application
    Filed: July 26, 2023
    Publication date: March 14, 2024
    Applicant: TDK CORPORATION
    Inventors: Toshihiro IGUCHI, Hisashi KOBAYASHI, Norihisa ANDO, Kenya TAMAKI
  • Patent number: 11915876
    Abstract: A ceramic electronic device comprises an element body including a ceramic layer and an internal electrode layer, and an external electrode electrically connected to at least one end of the internal electrode layer. The element body includes an interface part at least at a part of a boundary between the external electrode and the ceramic layer. The interface part includes an oxide containing aluminium and an oxide containing boron.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: February 27, 2024
    Assignee: TDK CORPORATION
    Inventors: Toshihiro Iguchi, Norihisa Ando, Kenya Tamaki, Hisashi Kobayashi
  • Publication number: 20230203642
    Abstract: Nanoclusters are produced in a gas phase using a nanocluster manufacturing section including: a vacuum container; a sputtering source that has a target as a cathode, performs magnetron sputtering by pulse discharge, and generates plasma; a pulse power source that supplies pulsed power to the sputtering source; a first inert gas supply section that supplies a first inert gas to the sputtering source; a nanocluster growth cell that is contained in the vacuum container; and a second inert gas introduction section that introduces a second inert gas into the nanocluster growth cell. A multitude of supports are rolled in the gas phase and each of the supports is sprinkled with a multitude of nanoclusters to cause each support to support the multitude of nanoclusters.
    Type: Application
    Filed: June 8, 2021
    Publication date: June 29, 2023
    Inventors: Atsushi NAKAJIMA, Hironori TSUNOYAMA, Mika UNO, Hiroyuki GUNJI, Toshihiro ANDO, Keizo TSUKAMOTO, Masahide TONA, Naoyuki HIRATA
  • Patent number: 8893645
    Abstract: An apparatus for synthesizing highly oriented, aligned carbon nanotubes from an alcohol includes a liquid tank for retaining an alcohol; a water cooling device for cooling the liquid tank from its outside; a condensing device for cooling and condensing vapor from the alcohol; a substrate holding device having an electrode for passing an electric current through the substrate in the alcohol; an inert gas inlet for removing air; a tank sealing device to prevent the alcohol becoming gaseous in phase; and a temperature measuring device, wherein the Si substrate with a buildup thereon of the thin film or insular particles is heated by electric current to a temperature, thereby providing a temperature gradient from the Si substrate surface toward the alcohol, wherein said thin film or insular particles is a catalyst for synthesizing carbon nanotubes, and the carbon nanotubes are synthesized.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: November 25, 2014
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Toshihiro Ando, Mika Gamo, Yafei Zhang
  • Patent number: 8557213
    Abstract: A novel carbon nanotube (64) is featured in that it has the highest Raman scattering intensity in the vicinity of 1580 cm?1 in its Raman spectrum. Carbon nanotubes can be grown on and from the catalytic fine particles (63) which consist of ultra-fine particles of cobalt oxide catalyst onto a substrate comprising a conductive substrate (62) and fine particles (63) of catalyst formed on a surface thereof. An electron emission device (60) so configured as to emit electrons by applying a voltage to apical ends (64a) of such carbon nanotubes (64) can be reduced in driving voltage and can achieve a current such as to emit a fluorescent material on the market for low-velocity electron beams. The electron emission device (60) needs no gate and can thus simplify the structure and reduce the cost of a surface light-emitting device for which the element is used.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: October 15, 2013
    Assignees: National Institute for Materials Science, Toppan Printing Co., Ltd.
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa, Mika Gamo, Hidenori Gamo
  • Patent number: 8420043
    Abstract: A nano-crystal diamond film synthesized on a substrate and containing, as a major component, nano-crystal diamond having a grain diameter from 1 nm to less than 1000 nm. This nano-crystal diamond film can be formed on a substrate by means of a plasma CVD method using a raw material gas containing a hydrocarbon and hydrogen, allowing the formation of the nano-crystal diamond film to take place outside the plasma region. This nano-crystal diamond film is applicable to the manufacture of an electrochemical device, an electrochemical electrode, a DNA chip, an organic electroluminescent device, an organic photoelectric receiving device, an organic thin film transistor, a cold electron-emission device, a fuel cell and a catalyst.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: April 16, 2013
    Assignees: Toppan Printing Co., Ltd., National Institute for Materials Science
    Inventors: Hidenori Gamo, Toshihiro Ando
  • Patent number: 7879309
    Abstract: A method is disclosed whereby a functional nanomaterial such as a monolayer carbon nanotube, a monolayer boron nitride nanotube, a monolayer silicon carbide nanotube, a multilayer carbon nanotube with the number of layers controlled, a multilayer boron nitride nanotube with the number of layers controlled, a multilayer silicon carbide nanotube with the number of layers controlled, a metal containing fullerene, and a metal containing fullerene with the number of layers controlled is produced at a high yield. According to the method, when a multilayer carbon nanotube (3) is formed by a chemical vapor deposition or a liquid phase growth process, an endothermic reaction aid (H2S) is introduced in addition to a primary reactant (CH4, H2) in the process to form a monolayer carbon nanotube (4).
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 1, 2011
    Assignee: Japan Science and Technology Agency
    Inventors: Tadashi Mitsui, Takashi Sekiguchi, Mika Gamo, Yafei Zhang, Toshihiro Ando
  • Publication number: 20100296984
    Abstract: An apparatus for producing hydrogen from methanol in a simple manner comprises a container (4) that retains liquid methanol (2) as a source material and gases (3) generated therein, a substrate (5) that is immersed in liquid methanol (2) in the container (4) loaded with a catalyst, and a power supply (6) for passing a direct or an alternating current through the substrate (5). The substrate may be made of an oxide or oxidized material, especially oxidized diamond, and loaded with a transition metal catalyst, especially Ni catalyst. With the substrate (5) heated, a novel catalytic methanol decomposition reaction occurs by a combination of abrupt temperature gradient directing towards methanol from the surface of the substrate, a catalysis of the oxide or oxidized material of the substrate and a catalysis of the catalyst loaded on the substrate, and a large amount of hydrogen gas is produced.
    Type: Application
    Filed: July 16, 2010
    Publication date: November 25, 2010
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa
  • Patent number: 7780945
    Abstract: A method that allows producing hydrogen from methanol in a simple manner and an apparatus that is small in size and light in weight, which can produce hydrogen from methanol, are provided. The apparatus comprises a container (4) that retains liquid methanol (2) as a source material and gases (3) generated therein, a substrate (5) that is immersed in liquid methanol (2) in the container (4) loaded with a catalyst, and a power supply (6) for passing a direct or an alternating current through the substrate (5). The substrate may be made of an oxide or oxidized material, especially oxidized diamond, and loaded with a transition metal catalyst, especially Ni catalyst.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: August 24, 2010
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa
  • Patent number: 7771697
    Abstract: A method is disclosed whereby a functional nanomaterial such as a monolayer carbon nanotube, a monolayer boron nitride nanotube, a monolayer silicon carbide nanotube, a multilayer carbon nanotube with the number of layers controlled, a multilayer boron nitride nanotube with the number of layers controlled, a multilayer silicon carbide nanotube with the number of layers controlled, a metal containing fullerene, and a metal containing fullerene with the number of layers controlled is produced at a high yield. According to the method, when a multilayer carbon nanotube (3) is formed by a chemical vapor deposition or a liquid phase growth process, an endothermic reaction aid (H2S) is introduced in addition to a primary reactant (CH4, H2) in the process to form a monolayer carbon nanotube (4).
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: August 10, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Tadashi Mitsui, Takashi Sekiguchi, Mika Gamo, Yafei Zhang, Toshihiro Ando
  • Publication number: 20100183494
    Abstract: A method is disclosed whereby a functional nanomaterial such as a monolayer carbon nanotube, a monolayer boron nitride nanotube, a monolayer silicon carbide nanotube, a multilayer carbon nanotube with the number of layers controlled, a multilayer boron nitride nanotube with the number of layers controlled, a multilayer silicon carbide nanotube with the number of layers controlled, a metal containing fullerene, and a metal containing fullerene with the number of layers controlled is produced at a high yield. According to the method, when a multilayer carbon nanotube (3) is formed by a chemical vapor deposition or a liquid phase growth process, an endothermic reaction aid (H2S) is introduced in addition to a primary reactant (CH4, H2) in the process to form a monolayer carbon nanotube (4).
    Type: Application
    Filed: March 3, 2010
    Publication date: July 22, 2010
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Tadashi MITSUI, Takashi SEKIGUCHI, Mika GAMO, Yafei ZHANG, Toshihiro ANDO
  • Publication number: 20100171409
    Abstract: A novel carbon nanotube (64) is featured in that it has the highest Raman scattering intensity in the vicinity of 1580 cm?1 in its Raman spectrum. Carbon nanotubes can be grown on and from the catalytic fine particles (63) which consist of ultra-fine particles of cobalt oxide catalyst onto a substrate comprising a conductive substrate (62) and fine particles (63) of catalyst formed on a surface thereof. An electron emission device (60) so configured as to emit electrons by applying a voltage to apical ends (64a) of such carbon nanotubes (64) can be reduced in driving voltage and can achieve a current such as to emit a fluorescent material on the market for low-velocity electron beams. The electron emission device (60) needs no gate and can thus simplify the structure and reduce the cost of a surface light-emitting device for which the element is used.
    Type: Application
    Filed: November 24, 2006
    Publication date: July 8, 2010
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa, Mika Gamo, Hidenori Gamo
  • Publication number: 20100124526
    Abstract: A method capable of synthesizing carbon nanotubes at low cost and large quantities, an apparatus usable for carrying out the method, and carbon nanotubes densely aligned on and firmly bonded to a Si substrate over, and oriented perpendicular to, an entire surface thereof are provided. Highly oriented, aligned carbon nanotubes are synthesized from an organic liquid by forming a substrate with a buildup thereon of a thin film or fine insular particles composed of at least one metallic element; exposing the substrate (3) having the buildup to a hydrogen plasma; and heating the substrate (3) exposed to the hydrogen plasma in the organic liquid (10) to a predetermined temperature.
    Type: Application
    Filed: April 1, 2009
    Publication date: May 20, 2010
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshihiro Ando, Mika Gamo, Yafei Zhang
  • Publication number: 20100084634
    Abstract: A nano-crystal diamond film synthesized on a substrate and containing, as a major component, nano-crystal diamond having a grain diameter from 1 nm to less than 1000 nm. This nano-crystal diamond film can be formed on a substrate by means of a plasma CVD method using a raw material gas containing a hydrocarbon and hydrogen, allowing the formation of the nano-crystal diamond film to take place outside the plasma region. This nano-crystal diamond film is applicable to the manufacture of an electrochemical device, an electrochemical electrode, a DNA chip, an organic electroluminescent device, an organic photoelectric receiving device, an organic thin film transistor, a cold electron-emission device, a fuel cell and a catalyst.
    Type: Application
    Filed: November 14, 2006
    Publication date: April 8, 2010
    Applicants: TOPPAN PRINTING CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hidenori Gamo, Toshihiro Ando
  • Patent number: 7608331
    Abstract: A fine spherical particle formed of diamond as a core and having carbon nano-materials radially grown therefrom is disclosed, which exhibits the appearance of a Marimo (Cladophora sauteri) particle. Fine diamond catalytic particles 2 whose surfaces are oxidized and treated to carry a transition metal catalyst are floated and stirred in a gas phase of hydrocarbon while being heated at a selected temperature to bring about a catalytic reaction which synthesizes carbon nano-materials and to grow them on the surface of said oxidized fine diamond particle. Nano fibers or filaments 32 of a nano size are grown from the fine diamond catalytic particle 31 as a core to form cladophora-form carbon. The carbon nano-materials if the supported transition metal is Ni or Co become carbon nano-tubes and if it is Pd become coin stacked carbon nano-graphite.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: October 27, 2009
    Assignee: National Institute for Materials Science
    Inventors: Toshihiro Ando, Kiyoharu Nakagawa, Mika Gamo, Hirokazu Oda
  • Patent number: 7531156
    Abstract: A method capable of synthesizing carbon nanotubes at low cost and large quantities, an apparatus usable for carrying out the method, and carbon nanotubes densely aligned on and firmly bonded to a Si substrate over, and oriented perpendicular to, an entire surface thereof are provided. Highly oriented, aligned carbon nanotubes are synthesized from an organic liquid by forming a substrate with a buildup thereon of a thin film or fine insular particles composed of at least one metallic element; exposing the substrate (3) having the buildup to a hydrogen plasma; and heating the substrate (3) exposed to the hydrogen plasma in the organic liquid (10) to a predetermined temperature.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: May 12, 2009
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Toshihiro Ando, Mika Gamo, Yafei Zhang
  • Patent number: 7521034
    Abstract: 3C-SiC nanowhisker and a method of synthesizing 3C-SiC nanowhisker wherein its diameter and length can be controlled. The method is safe and low cost, and the whisker can emit visible light of various wavelengths. 3C-SiC nanowhisker is formed by depositing thin film (2) made of a metal element on Si substrate (1), placing this Si substrate (1) into a plasma CVD apparatus, and holding it for predetermined time at predetermined substrate temperature in the plasma consisting of hydrogen and hydrocarbon. Si of Si substrate (1) and C in plasma dissolve at supersaturation into metal liquid particles (3), 3C-SiC nanowhisker (4) grows on the metal liquid particles (3), whisker surface is terminated with H so as to maintain the diameter constant, and the metal liquid particles (3) at whisker root take in Si from Si substrate (1) and penetrate into Si substrate (1).
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: April 21, 2009
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Toshihiro Ando, Mika Gamo, Yafei Zhang
  • Publication number: 20080193764
    Abstract: A fine spherical particle formed of diamond as a core and having carbon nano-materials radially grown therefrom is disclosed, which exhibits the appearance of a Marimo (Cladophora sauteri) particle. Fine diamond catalytic particles 2 whose surfaces are oxidized and treated to carry a transition metal catalyst are floated and stirred in a gas phase of hydrocarbon while being heated at a selected temperature to bring about a catalytic reaction which synthesizes carbon nano-materials and to grow them on the surface of said oxidized fine diamond particle. Nano fibers or filaments 32 of a nano size are grown from the fine diamond catalytic particle 31 as a core to form cladophora-form carbon. The carbon nano-materials if the supported transition metal is Ni or Co become carbon nano-tubes and if it is Pd become coin stacked carbon nano-graphite.
    Type: Application
    Filed: May 10, 2005
    Publication date: August 14, 2008
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshihiro Ando, Kiyohara Nakagawa, Mika Gamo, Hirokazu Oda
  • Patent number: 7364714
    Abstract: 3C—SiC nanowhisker and a method of synthesizing 3C—SiC nanowhisker wherein its diameter and length can be controlled. The method is safe and low cost, and the whisker can emit visible light of various wavelengths. 3C—SiC nanowhisker is formed by depositing thin film (2) made of a metal element on Si substrate (1), placing this Si substrate (1) into a plasma CVD apparatus, and holding it for predetermined time at predetermined substrate temperature in the plasma consisting of hydrogen and hydrocarbon. Si of Si substrate (1) and C in plasma dissolve at supersaturation into metal liquid particle (3), 3C—SiC nanowhisker (4) grows on the metal liquid particles (3), whisker surface is terminated with H so as to maintain the diameter constant, and the metal liquid particles (3) at whisker root take in Si from Si substrate (1) and penetrate into Si substrate (1).
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: April 29, 2008
    Assignees: Japan Science and Technology Agency, National Institute for Materials Science
    Inventors: Toshihiro Ando, Mika Gamo, Yafei Zhang
  • Publication number: 20080003162
    Abstract: 3C-SiC nanowhisker and a method of synthesizing 3C-SiC nanowhisker wherein its diameter and length can be controlled. The method is safe and low cost, and the whisker can emit visible light of various wavelengths. 3C-SiC nanowhisker is formed by depositing thin film (2) made of a metal element on Si substrate (1), placing this Si substrate (1) into a plasma CVD apparatus, and holding it for predetermined time at predetermined substrate temperature in the plasma consisting of hydrogen and hydrocarbon. Si of Si substrate (1) and C in plasma dissolve at supersaturation into metal liquid particles (3), 3C-SiC nanowhisker (4) grows on the metal liquid particles (3), whisker surface is terminated with H so as to maintain the diameter constant, and the metal liquid particles (3) at whisker root take in Si from Si substrate (1) and penetrate into Si substrate (1).
    Type: Application
    Filed: January 3, 2007
    Publication date: January 3, 2008
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshihiro Ando, Mika Gamo, Yafei Zhang