Patents by Inventor Toshihiro Katsuda

Toshihiro Katsuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200169080
    Abstract: The present teaching provides a power supply system capable of fully utilizing a plurality of batteries having different performances. A power supply system disclosed here includes a main line, a plurality of sweep modules, and a controller. Each of the sweep modules includes a battery module and an electric power circuit module. The electric power circuit module includes a switching device for connecting a connection state between the battery modules and the main line between connection and disconnection. The controller performs sweep control of sequentially switching the battery module connected to the main line among the plurality of battery modules. During an input of electric power from outside, the controller disconnects the battery module whose SOC level satisfies a high SOC condition from the main line (S7), and continues sweep control (S8, S9).
    Type: Application
    Filed: November 18, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169081
    Abstract: A power supply system includes a plurality of sweep modules. Each sweep module includes a battery module, an input and output circuit, a switching element, a capacitor, and a line. The input and output circuit connects the battery module to a main line. The switching element switches between connection and disconnection between the battery module and the main line. The capacitor is attached in parallel to the battery module. The line connects the input and output circuit to the battery module. The line is maintained in a state in which a loop portion is formed.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169115
    Abstract: The present teaching provides a power supply system capable of appropriately performing replacement or repairing of a component of a module where a problem occurs without stopping the entire operation, in a case where the problem occurs in of the module in a plurality of modules. The power supply system includes a plurality of sweep modules, a problem detector, an indicator, and a controller. Each sweep module includes a battery module and an electric power circuit module. The problem detector detects a problem for each sweep module. The indicator indicates a sweep module in which a problem is detected. In a case where a problem is detected in the sweep module (S4: YES), the controller causes the indicator to indicate a failure sweep module in which the problem is detected (S5). The controller disconnects the failure sweep module from a main line, and continues sweep control (SG through S8).
    Type: Application
    Filed: November 18, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200112183
    Abstract: Provided is a full-charge-capacity estimating device that has one or more of a plurality of battery modules, as battery-modules-to-be-measured, charged or discharged by means of a first switch element and a second switch element according to whether a power supply device is in a powering state or a regenerating state, measures an integrated current value and a change in the state-of-charge of the battery-module-to-be-measured, and then estimates the full charge capacity of the battery-module-to-be-measured from the integrated current value and the change in the state-of-charge.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 9, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Takayuki BAN
  • Patent number: 9059652
    Abstract: A motor drive system includes a first interlock mechanism configured to be activated in response to transition to an operable state of an interruption device, to open an open/close device, a second interlock mechanism configured to be activated in response to transition to an openable state of a case containing a power control unit, to open the open/close device, and a control device. The control device is configured to perform, when the first interlock mechanism is activated, a first process of opening the open/close device after shutting down the power control unit, and to perform, when the second interlock mechanism is activated, a second process of opening the open/close device while driving the power control unit, instead of the first process, depending on a counter electromotive voltage generated by a motor.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: June 16, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyori Matsumura, Toshihiro Katsuda, Nao Uchibori
  • Publication number: 20140176034
    Abstract: A motor drive system includes a first interlock mechanism configured to be activated in response to transition to an operable state of an interruption device, to open an open/close device, a second interlock mechanism configured to be activated in response to transition to an openable state of a case containing a power control unit, to open the open/close device, and a control device. The control device is configured to perform, when the first interlock mechanism is activated, a first process of opening the open/close device after shutting down the power control unit, and to perform, when the second interlock mechanism is activated, a second process of opening the open/close device while driving the power control unit, instead of the first process, depending on a counter electromotive voltage generated by a motor.
    Type: Application
    Filed: August 3, 2011
    Publication date: June 26, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyori Matsumura, Toshihiro Katsuda, Nao Uchibori
  • Publication number: 20100244558
    Abstract: When such a failure as the output from a voltage sensor becomes unavailable is detected, a controller controls a connecting section to disconnected state and controls a voltage converter to voltage unconverted state so that the voltage of a positive pole bus is outputted to the terminal of the voltage converter on the connecting section side, and performs voltage control of the positive pole bus based on the output from a voltage sensor in place of the output from the voltage sensor. Consequently, a power supply unit for a vehicle which can perform escape running while maintaining the traveling performance as much as possible even upon occurrence of failure in the sensor is provided.
    Type: Application
    Filed: December 11, 2008
    Publication date: September 30, 2010
    Applicants: Toyota Jidosha Kabushiki Kaisha, AISIN AW CO., LTD
    Inventors: Noritake Mitsutani, Toshihiro Katsuda, Masahiro Nishiu
  • Publication number: 20100121507
    Abstract: A control device has a coupling determination sensor for detecting external connection of a charge table. When the connection of the charge cable is detected according to a signal from the sensor, the control device activates an electric device connected to a communication line of a charge-time-dedicated power supply system. Since the control device of the invention can activate only the electric device related to the charging while keeping electric devices not related to the charging at rest, and therefore prevents wasteful electric power consumption.
    Type: Application
    Filed: April 17, 2008
    Publication date: May 13, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenichi Ishii, Masayuki Komatsu, Toshihiro Katsuda, Ryouji Oki, Tetsuhiro Ishikawa, Kazuyoshi Ohbayashi, Hiroki Sawada
  • Patent number: 6917179
    Abstract: In regenerative braking mode, an inverter converts, according to PWMC signal from a control unit, an AC voltage generated by a motor into a DC voltage to supply the converted DC voltage to an up-converter which down-converts the DC voltage to charge a DC power supply. The control unit receives voltage V2 from a voltage sensor to stop the up-converter if voltage V2 is higher than a predetermined value. The control unit further receives voltage Vf from a voltage sensor that is applied to a DC/DC converter and stops the up-converter if voltage Vf is higher than a predetermined value. Moreover, the control unit receives voltage V1 of the DC power supply from a voltage sensor to stop the up-converter if voltage V1 does not match voltage V2.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 12, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masayuki Komatsu, Ryoji Oki, Toshihiro Katsuda
  • Patent number: 6657833
    Abstract: Frequency of judgment of welding of relays is increased to increase likelihood of early detection of welding. It is determined that a battery 22 is not being recharged or discharged when a vehicle speed V of an electric vehicle is approximately 0 and a brake pedal 54 is pressed, and a switching element of an inverter 24 is controlled to be switched to discharge electric charges which are stored in a capacitor 44. After discharging, relays 30, 32 are turned off, and voltages RV1, RV2 between the terminals of the relays 30, 32 are detected by voltmeters 40, 42 to judge whether either of the voltages RV1, RV2 has a threshold value RVref (approximate value 0) or less. When it is so determined, it is judged that the relays 30, 32 are welded, and an LED 70 is illuminated.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: December 2, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tsutomu Matsuki, Toshihiro Katsuda
  • Publication number: 20030081440
    Abstract: In regenerative braking mode, an inverter converts, according to PWMC signal from a control unit, an AC voltage generated by a motor into a DC voltage to supply the converted DC voltage to an up-converter which down-converts the DC voltage to charge a DC power supply. The control unit receives voltage V2 from a voltage sensor to stop the up-converter if voltage V2 is higher than a predetermined value. The control unit further receives voltage Vf from a voltage sensor that is applied to a DC/DC converter and stops the up-converter if voltage Vf is higher than a predetermined value. Moreover, the control unit receives voltage V1 of the DC power supply from a voltage sensor to stop the up-converter if voltage V1 does not match voltage V2.
    Type: Application
    Filed: October 18, 2002
    Publication date: May 1, 2003
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masayuki Komatsu, Ryoji Oki, Toshihiro Katsuda
  • Publication number: 20020070608
    Abstract: Frequency of judgment of welding of relays is increased to increase likelihood of early detection of welding. It is determined that a battery 22 is not being recharged or discharged when a vehicle speed V of an electric vehicle is approximately 0 and a brake pedal 54 is pressed, and a switching element of an inverter 24 is controlled to be switched to discharge electric charges which are stored in a capacitor 44. After discharging, relays 30, 32 are turned off, and voltages RV1, RV2 between the terminals of the relays 30, 32 are detected by voltmeters 40, 42 to judge whether either of the voltages RV1, RV2 has a threshold value RVref (approximate value 0) or less. When it is so determined, it is judged that the relays 30, 32 are welded, and an LED 70 is illuminated.
    Type: Application
    Filed: November 13, 2001
    Publication date: June 13, 2002
    Applicant: TOYOYA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tsutomu Matsuki, Toshihiro Katsuda
  • Patent number: 6380717
    Abstract: A device and method is provided that can detect overcharge reliably by separating heat generated by internal resistance and heat chemically generated upon overcharging in a secondary battery. Based on the temperature of the secondary battery detected every first predetermined time by a battery temperature detection section, a temperature gradient operation section calculates a temperature gradient indicating a temperature increase per unit time for every second predetermined time that is longer than the first predetermined time. When a temperature gradient determination section determines that the temperature gradient is larger than a predetermined temperature gradient threshold, which is preset according to the charged state of the secondary battery, N times in a row (where N is a natural number), a fully charged state of the secondary battery is detected.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: April 30, 2002
    Assignees: Matsushita Electric Industrial Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Yusai Murakami, Tadao Kimura, Toshiaki Nakanishi, Toshihiro Katsuda, Yoshiaki Kikuchi
  • Publication number: 20010035741
    Abstract: A device and method is provided that can detect overcharge reliably by separating heat generated by internal resistance and heat chemically generated upon overcharging in a secondary battery. Based on the temperature of the secondary battery detected every first predetermined time by a battery temperature detection section, a temperature gradient operation section calculates a temperature gradient indicating a temperature increase per unit time for every second predetermined time that is longer than the first predetermined time. When a temperature gradient determination section determines that the temperature gradient is larger than a predetermined temperature gradient threshold, which is preset according to the charged state of the secondary battery, N times in a row (where N is a natural number), a fully charged state of the secondary battery is detected.
    Type: Application
    Filed: March 8, 2001
    Publication date: November 1, 2001
    Inventors: Yusai Murakami, Tadao Kimura, Toshiaki Nakanishi, Toshihiro Katsuda, Yoshiaki Kikuchi
  • Patent number: 5417587
    Abstract: A shielded connector is provided which makes connection for shielding and sealing for waterproofing at the same time that the connector is directly mounted on a vehicle instrument such as a motor. A connector housing with a terminal fitting-accommodating hole formed therein is provided with a shielding metal shell, into which accommodating hole is fitted a terminal fitting attached to a shielded cable such that the shield of the shielded cable is connected with the metal shell via a connecting member fitted on the shield. The connector housing is further provided on its outer periphery with a flange for fixing the connector housing in a connector-mounting hole formed in the casing of the instrument and with a seal ring for sealing the mounting hole. The metal shell is extended to have a portion thereof exposed on the surface of the flange facing toward the casing.
    Type: Grant
    Filed: January 24, 1994
    Date of Patent: May 23, 1995
    Assignee: Yazaki Corporation
    Inventors: Toshihiro Katsuda, Shigemitsu Inaba, Hidehiko Kuboshima
  • Patent number: 5400268
    Abstract: A vehicle speed determining device determines a running speed of a vehicle, on the basis of pulses received from a vehicle speed sensor. A first determination that the running speed of the vehicle has been zeroed is made, if a next pulse has not been received from the sensor, within a predetermined first length of time after the reception of a last pulse from the sensor. A second determination that a period of the next pulse to be received next is abnormally long is made, if said next pulse has not been received within a predetermined second length of time after the reception of the last pulse. If the second determination is made, the first determination is inhibited until the next pulse has been received.
    Type: Grant
    Filed: October 20, 1992
    Date of Patent: March 21, 1995
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshihiro Katsuda, Shinji Sekido, Setsuo Tokoro, Tatsuo Kyushima, Masaharu Tanaka
  • Patent number: RE41303
    Abstract: In regenerative braking mode, an inverter converts, according to PWMC signal from a control unit, an AC voltage generated by a motor into a DC voltage to supply the converted DC voltage to an up-converter which down-converts the DC voltage to charge a DC power supply. The control unit receives voltage V2 from a voltage sensor to stop the up-converter if voltage V2 is higher than a predetermined value. The control unit further receives voltage Vf from a voltage sensor that is applied to a DC/DC converter and stops the up-converter if voltage Vf is higher than a predetermined value. Moreover, the control unit receives voltage V1 of the DC power supply from a voltage sensor to stop the up-converter if voltage V1 does not match voltage V2.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: May 4, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masayuki Komatsu, Ryoji Oki, Toshihiro Katsuda