Patents by Inventor Toshihiro Tanuma

Toshihiro Tanuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220328847
    Abstract: A catalyst layer including: a catalyst-supported carbon including a catalyst including platinum supported on a carbon carrier; and an ionomer, in which the catalyst-supported carbon has a mesopore having a pore diameter of from 2 nm to less than 10 nm in a pore distribution obtained by a nitrogen adsorption method, at least a part of the ionomer exists in the mesopore having a pore diameter of from 2 nm to less than 10 nm, a content of the ionomer with respect to 100 parts by mass of the carbon carrier is 100 parts by mass or more, and an occupancy rate of the ionomer in a total volume of the mesopore having a pore diameter of from 2 nm to less than 10 nm is 50% by volume or less.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 13, 2022
    Applicant: AGC Inc.
    Inventor: Toshihiro TANUMA
  • Patent number: 10563021
    Abstract: To provide methods for producing a liquid composition, a coating liquid for a catalyst layer and a membrane electrode assembly, capable of making cracking less likely to occur at the time of forming a solid polymer electrolyte membrane or a catalyst layer. A copolymer having a structural unit represented by —[CF2—CF{(OCF2CFX)mOp(CF2)nSO3H}]— (wherein X: F or CF3, m: 1 to 3, p: 0 or 1, and n: an integer of 1 to 12) and a structural unit derived from tetrafluoroethylene, is dispersed in a medium containing water and a hydrocarbon-type alcohol (but not including a fluorinated solvent) to prepare a dispersion wherein the concentration of the copolymer is from 13 to 26 mass %, and the dispersion and a fluorinated solvent are mixed so that the sum of the concentration of the copolymer and the concentration of the fluorinated solvent becomes to be from 17 to 35 mass %, to prepare a liquid composition.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: February 18, 2020
    Assignee: AGC Inc.
    Inventors: Hiroyuki Watabe, Satoru Hommura, Toshihiro Tanuma
  • Patent number: 10547062
    Abstract: To provide a polymer electrolyte fuel cell having a high cell voltage. A polymer electrolyte fuel cell 1 comprising a membrane/electrode assembly 10 having a cathode catalyst layer 20, an anode catalyst layer 22 and a polymer electrolyte membrane 24 disposed between the cathode catalyst layer 20 and the anode catalyst layer 22, a porous first separator 12 disposed on the cathode catalyst layer 20 side of the membrane/electrode assembly 10, a second separator 18 disposed on the anode catalyst layer 22 side of the membrane/electrode assembly 10; and a cathode interlayer 14 disposed between the cathode catalyst layer 20 and the first separator 12 so as to be in direct contact with them, wherein the cathode interlayer 14 contains carbon fibers having an average fiber diameter of from 30 to 300 nm and an ion exchange resin.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: January 28, 2020
    Assignee: AGC Inc.
    Inventors: Toshihiro Tanuma, Shinji Kinoshita
  • Patent number: 10035898
    Abstract: To provide a method for producing a liquid composition or a coating liquid for forming a catalyst layer, which can make cracking less likely to occur at the time of forming a solid polymer electrolyte membrane or a catalyst layer; and a method for producing a membrane electrode assembly, which can make cracking less likely to occur at the time of forming the catalyst layer or the solid polymer electrolyte membrane.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: July 31, 2018
    Assignee: Asahi Glass Company, Limited
    Inventors: Satoru Hommura, Hiroyuki Watabe, Masahiro Kaseda, Toshihiro Tanuma
  • Publication number: 20180079872
    Abstract: To provide methods for producing a liquid composition, a coating liquid for a catalyst layer and a membrane electrode assembly, capable of making cracking less likely to occur at the time of forming a solid polymer electrolyte membrane or a catalyst layer. A copolymer having a structural unit represented by —[CF2—CF{(OCF2CFX)mOp(CF2)nSO3H}]— (wherein X: F or CF3, m: 1 to 3, p: 0 or 1, and n: an integer of 1 to 12) and a structural unit derived from tetrafluoroethylene, is dispersed in a medium containing water and a hydrocarbon-type alcohol (but not including a fluorinated solvent) to prepare a dispersion wherein the concentration of the copolymer is from 13 to 26 mass %, and the dispersion and a fluorinated solvent are mixed so that the sum of the concentration of the copolymer and the concentration of the fluorinated solvent becomes to be from 17 to 35 mass %, to prepare a liquid composition.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 22, 2018
    Applicant: Asahi Glass Company, Limited
    Inventors: Hiroyuki WATABE, Satoru HOMMURA, Toshihiro TANUMA
  • Publication number: 20180051159
    Abstract: To provide a method for producing a liquid composition or a coating liquid for forming a catalyst layer, which can make cracking less likely to occur at the time of forming a solid polymer electrolyte membrane or a catalyst layer; and a method for producing a membrane electrode assembly, which can make cracking less likely to occur at the time of forming the catalyst layer or the solid polymer electrolyte membrane.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 22, 2018
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Satoru HOMMURA, Hiroyuki WATABE, Masahiro KASEDA, Toshihiro TANUMA
  • Publication number: 20150270567
    Abstract: To provide a process for producing a membrane/electrode assembly for a polymer electrolyte fuel cell, by which the effect of improving power generation performance by providing an interlayer between a catalyst layer and a gas diffusion layer is sufficiently exhibited, and a paste for forming an interlayer suitable for the production process. A process for producing a membrane/electrode assembly for a polymer electrolyte fuel cell, comprising (a) a step of forming a first wet film 134 by coating the surface of a first carrier film 50 with a paste for forming an interlayer, said paste comprising a carbon material, a polymer and a liquid medium and having a viscosity of from 250 to 450 mPa·s at a shear rate of 200 (1/s) as measured at 25° C. by using an RE550 viscometer (manufactured by TOKI SANGYO CO., LTD.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 24, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Toshihiro TANUMA, Hiroshi SHIMODA
  • Patent number: 8999434
    Abstract: A process is provided whereby a membrane/electrode assembly for polymer electrolyte fuel cells whereby a high output voltage is obtainable within a wide range of current densities.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: April 7, 2015
    Assignees: Asahi Glass Company, Limited, Panasonic Corporation
    Inventors: Hiroshi Shimoda, Hirokazu Wakabayashi, Shinji Kinoshita, Toshihiro Tanuma, Hideki Nakagawa
  • Publication number: 20150044593
    Abstract: To provide a polymer electrolyte fuel cell having a high cell voltage. A polymer electrolyte fuel cell 1 comprising a membrane/electrode assembly 10 having a cathode catalyst layer 20, an anode catalyst layer 22 and a polymer electrolyte membrane 24 disposed between the cathode catalyst layer 20 and the anode catalyst layer 22, a porous first separator 12 disposed on the cathode catalyst layer 20 side of the membrane/electrode assembly 10, a second separator 18 disposed on the anode catalyst layer 22 side of the membrane/electrode assembly 10; and a cathode interlayer 14 disposed between the cathode catalyst layer 20 and the first separator 12 so as to be in direct contact with them, wherein the cathode interlayer 14 contains carbon fibers having an average fiber diameter of from 30 to 300 nm and an ion exchange resin.
    Type: Application
    Filed: April 1, 2014
    Publication date: February 12, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Toshihiro TANUMA, Shinji Kinoshita
  • Patent number: 8535847
    Abstract: A membrane electrode assembly less susceptible to flooding or shortcircuiting caused by piercing of carbon fibers of a gas diffusion layer to a polymer electrolyte membrane is provided, containing a cathode having a catalyst layer and a gas diffusion layer, an anode having a catalyst layer and a gas diffusion layer, and a polymer electrolyte membrane interposed between the catalyst layer of the cathode and the catalyst layer of the anode, wherein each of the cathode and the anode further has a protective layer containing carbon fibers having an average fiber diameter of from 1 to 30 ?m and a fluorinated ion exchange resin, between the catalyst layer and the gas diffusion layer, and the mass ratio (F/C) of the fluorinated ion exchange resin (F) to the carbon fibers (C) contained in the protective layer is from 0.05 to 0.30.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: September 17, 2013
    Assignee: Asahi Glass Company, Limited
    Inventor: Toshihiro Tanuma
  • Patent number: 8475967
    Abstract: To provide a membrane/electrode assembly for polymer electrolyte fuel cells, capable of achieving high power generation performance under low or no humidity operation conditions, and a process for producing a cathode for polymer electrolyte fuel cells. A membrane/electrode assembly 10, comprising: an anode 20 having a catalyst layer 22 and a gas diffusion layer 28, a cathode 30 having a catalyst layer 32 and a gas diffusion layer 38, and a polymer electrolyte membrane 40 interposed between the catalyst layer 22 of the anode 20 and the catalyst layer 32 of the cathode, wherein the cathode 30 has, between the catalyst layer 32 and the gas diffusion layer 38, a first interlayer 36 comprising carbon fibers (C1) and a fluorinated ion exchange resin (F1), and a second interlayer 34 comprising carbon fibers (C2) and a fluorinated ion exchange resin (F2), in this order from the gas diffusion layer 38 side.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 2, 2013
    Assignee: Asahi Glass Company, Limited
    Inventor: Toshihiro Tanuma
  • Patent number: 8470943
    Abstract: A solid polymer electrolyte material made of a copolymer comprising a repeating unit based on a fluoromonomer A which gives a polymer having an alicyclic structure in its main chain by radical polymerization, and a repeating unit based on a fluoromonomer B of the following formula (1): CF2?CF(Rf)jSO2X??(1) wherein j is 0 or 1, X is a fluorine atom, a chlorine atom or OM {wherein M is a hydrogen atom, an alkali metal atom or a group of NR1R2R3R4 (wherein each of R1, R2, R3 and R4 which may be the same or different, is a hydrogen atom or a monovalent organic group)}, and Rf is a C1-20 polyfluoroalkylene group having a straight chain or branched structure which may contain ether oxygen atoms.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: June 25, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Atsushi Watakabe, Takeshi Eriguchi, Toshihiro Tanuma, Yasuhiro Kunisa
  • Patent number: 8372474
    Abstract: A process comprising: providing a substrate with a catalyst layer thereon; depositing a first ionomer overcoat layer over the catalyst layer, the first ionomer overcoat layer comprising an ionomer and a first solvent; drying the first ionomer overcoat layer to provide a first electrode ionomer overcoat layer; depositing a second ionomer overcoat layer over the first electrode ionomer overcoat layer, and wherein the second ionomer overcoat layer comprises an ionomer and a second solvent.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: February 12, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Bhaskar Sompalli, Chunxin Ji, Susan G. Yan, Hubert A. Gasteiger, Hiroshi Shimoda, Shinji Terazono, Hirokazu Wakabayashi, Atsuo Okawara, Kohta Yamada, Seigo Kotera, Shinji Kinoshita, Toshihiro Tanuma
  • Publication number: 20120321989
    Abstract: To provide a membrane/electrode assembly for polymer electrolyte fuel cells, capable of achieving high-power generation performance under low or no humidity operation conditions, and a process for producing a cathode for polymer electrolyte fuel cells. A membrane/electrode assembly 10, comprising: an anode 20 having a catalyst layer 22 and a gas diffusion layer 28, a cathode 30 having a catalyst layer 32 and a gas diffusion layer 38, and a polymer electrolyte membrane 40 interposed between the catalyst layer 22 of the anode 20 and the catalyst layer 32 of the cathode, wherein the cathode 30 has, between the catalyst layer 32 and the gas diffusion layer 38, a first interlayer 36 comprising carbon fibers (C1) and a fluorinated ion exchange resin (F1), and a second interlayer 34 comprising carbon fibers (C2) and a fluorinated ion exchange resin (F2), in this order from the gas diffusion layer 38 side.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 20, 2012
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventor: Toshihiro TANUMA
  • Publication number: 20120301813
    Abstract: A solid polymer electrolyte material made of a s copolymer comprising a repeating unit based on a fluoromonomer A which gives a polymer having an alicyclic structure in its main chain by radical polymerization, and a repeating unit based on a fluoromonomer B of the following formula (1): CF2?CF(Rf)jSO2X??(1) wherein j is 0 or 1, X is a fluorine atom, a chlorine atom or OM {wherein M is a hydrogen atom, an alkali metal atom or a group of NR1R2R3R4 (wherein each of R1, R2, R3 and R4 which may be the same or different, is a hydrogen atom or a monovalent organic group)}, and Rf is a C1-20 polyfluoroalkylene group having a straight chain or branched structure which may contain ether oxygen atoms.
    Type: Application
    Filed: August 1, 2012
    Publication date: November 29, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Atsushi Watakabe, Takeshi Eriguchi, Toshihiro Tanuma, Yasuhiro Kunisa
  • Patent number: 8263710
    Abstract: A solid polymer electrolyte material made of a copolymer comprising a repeating unit based on a fluoromonomer A which gives a polymer having an alicyclic structure in its main chain by radical polymerization, and a repeating unit based on a fluoromonomer B of the following formula (1): CF2?CF(Rf)jSO2X??(1) wherein j is 0 or 1, X is a fluorine atom, a chlorine atom or OM {wherein M is a hydrogen atom, an alkali metal atom or a group of NR1R2R3R4 (wherein each of R1, R2, R3 and R4 which may be the same or different, is a hydrogen atom or a monovalent organic group)}, and Rf is a C1-20 polyfluoroalkylene group having a straight chain or branched structure which may contain ether oxygen atoms.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 11, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Atsushi Watakabe, Takeshi Eriguchi, Toshihiro Tanuma, Yasuhiro Kunisa
  • Patent number: 8221919
    Abstract: In the production of a membrane/electrode assembly 10, a first catalyst layer 22 (a second catalyst layer 34) is formed by a process comprising steps (a) and (b). (a) A step of applying a coating fluid comprising a catalyst and an ion-exchange resin, on a substrate to form a coating fluid layer. (b) A step of disposing a reinforcing layer 24 (34) on the coating fluid layer formed in the step (a) and then, drying the coating fluid layer to form a first catalyst layer 22 (a second catalyst layer 34) The process provides a catalyst layer whereby defects such as cracks are scarcely formed in the catalyst layer, and the bond strength is high at the interface between the catalyst layer and a reinforcing layer and at the interface between the catalyst layer and a polymer electrolyte membrane.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: July 17, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Hiroshi Shimoda, Shinji Kinoshita, Toshihiro Tanuma, Seigo Kotera
  • Patent number: 8202570
    Abstract: Provided are a process for producing a membrane/electrode assembly for a polymer electrolyte fuel cell and a process for producing a polymer electrolyte fuel cell, capable of achieving a high output voltage in a wide current density range. At least one of an anode and a cathode in a membrane/electrode assembly for a polymer electrolyte fuel cell is formed through a catalyst layer forming step of applying a first coating fluid containing a catalyst and an ion exchange resin, onto a substrate to form a catalyst layer; a gas diffusion layer forming step of applying a second coating fluid containing carbon fibers and an ion exchange resin, onto the catalyst layer to form a gas diffusion layer to serve as an outermost layer of the membrane/electrode assembly for the polymer electrolyte fuel cell; and a peeling step of peeling the substrate off from the catalyst layer.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: June 19, 2012
    Assignees: Asahi Glass Company, Limited, Panasonic Corporation
    Inventor: Toshihiro Tanuma
  • Publication number: 20110305971
    Abstract: A solid polymer electrolyte material made of a copolymer comprising a repeating unit based on a fluoromonomer A which gives a polymer having an alicyclic structure in its main chain by radical polymerization, and a repeating unit based on a fluoromonomer B of the following formula (1): CF2?CF(Rf)jSO2X ??(1) wherein j is 0 or 1, X is a fluorine atom, a chlorine atom or OM {wherein M is a hydrogen atom, an alkali metal atom or a group of NR1R2R3R4 (wherein each of R1, R2, R3 and R4 which may be the same or different, is a hydrogen atom or a monovalent organic group)}, and Rf is a C1-20 polyfluoroalkylene group having a straight chain or branched structure which may contain ether oxygen atoms.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 15, 2011
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Atsushi WATAKABE, Takeshi Eriguchi, Toshihiro Tanuma, Yasuhiro Kunisa
  • Patent number: 8043763
    Abstract: A solid polymer electrolyte material made of a copolymer comprising a repeating unit based on a fluoromonomer A which gives a polymer having an alicyclic structure in its main chain by radical polymerization, and a repeating unit based on a fluoromonomer B of the following formula (1): CF2?CF(Rf)jSO2X??(1) wherein j is 0 or 1, X is a fluorine atom, a chlorine atom or OM {wherein M is a hydrogen atom, an alkali metal atom or a group of NR1R2R3R4 (wherein each of R1, R2, R3 and R4 which may be the same or different, is a hydrogen atom or a monovalent organic group)}, and Rf is a C1-20 polyfluoroalkylene group having a straight chain or branched structure which may contain ether oxygen atoms.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: October 25, 2011
    Assignee: Asahi Glass Company, Limited
    Inventors: Atsushi Watakabe, Takeshi Eriguchi, Toshihiro Tanuma, Yasuhiro Kunisa