Patents by Inventor Toshihiro Yoshida

Toshihiro Yoshida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210408584
    Abstract: Provided is an all-solid-state secondary battery including a solid electrolyte which is identified as 3LiOH.Li2SO4 by X-ray diffraction. The solid electrolyte further contains boron.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Applicant: NGK INSULATORS, LTD.
    Inventors: Harunobu ONISHI, Satoshi OZAKI, Toshihiro YOSHIDA, Yuji KATSUDA, Yosuke SATO, En YAGI
  • Publication number: 20210408583
    Abstract: Provided is a solid electrolyte which is identified as 3LiOH.Li2SO4 by diffractometry. The solid electrolyte further contains boron.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Applicants: NAGOYA INSTITUTE OF TECHNOLOGY, NGK INSULATORS, LTD.
    Inventors: Reona MIYAZAKI, Harunobu ONISHI, Satoshi OZAKI, Toshihiro YOSHIDA, Yuji KATSUDA, Yosuke SATO, En YAGI
  • Patent number: 11211182
    Abstract: A cable conductor includes a conductor portion and an insulating material covering the conductor portion. The conductor portion includes a plurality of conductive materials having different characteristics.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: December 28, 2021
    Assignee: YAZAKI CORPORATION
    Inventors: Hideomi Adachi, Takeshi Ogue, Masahide Tsuru, Hiroyuki Yoshida, Kenta Yanazawa, Toshihiro Nagashima, Tetsuo Yamada
  • Publication number: 20210096190
    Abstract: An energy storage system includes a lead-acid battery, a battery management unit. The battery management unit defines, based on an open voltage of the lead-acid battery, a first amount of change in a capacity of the lead-acid battery from a reference state, correlating with the open voltage of the lead-acid battery and caused by a first deterioration factor and defines, based on the first amount of change in the capacity and an amount of change in overall internal resistance of the lead-acid battery from the reference state, a second amount of change in a capacity of the lead-acid battery, not correlating with the open voltage and caused by a second deterioration factor. The battery management unit defines, based on the first and second amounts of change in the capacity, at least one of a battery capacity of the lead-acid battery or an amount of change in the battery capacity from the reference state.
    Type: Application
    Filed: July 4, 2018
    Publication date: April 1, 2021
    Inventors: Toshihiro YOSHIDA, Yuki NAKANISHI, Kazuhiro SUGIE
  • Publication number: 20210082175
    Abstract: A three-dimensional shape data generation apparatus includes: a processor configured to obtain two-dimensional shape data representing a two-dimensional shape corresponding to a three-dimensional shape of a target to which attribute information is to be assigned, obtain the attribute information of the two-dimensional shape, and assign the obtained attribute information to at least some three-dimensional elements among plural three-dimensional elements representing the three-dimensional shape to generate three-dimensional shape data.
    Type: Application
    Filed: January 9, 2020
    Publication date: March 18, 2021
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Teppei AOKI, Yasushi UEMURA, Toshihiro YOSHIDA, Teruyuki KOJIMA
  • Patent number: 10847809
    Abstract: A solid-oxide-electrolysis-cell-type hydrogen production apparatus includes a cell structure including a first electrode, a second electrode, and an electrolyte layer, a gas diffusion layer disposed adjacent to the first electrode, and a gas channel plate disposed adjacent to the gas diffusion layer, in which the gas diffusion layer is formed of a porous metal body having a three-dimensional mesh-like skeleton, the gas channel plate includes a first region including a first channel, a second region including a second channel, and a third region including a third channel, the first channel includes a slit extending from the center of the gas channel plate toward its outer edge at the boundary surface between the first region and the second region, letting the total area of the first channel at the boundary surface be a first opening area S1, letting the total area of the second channel at the boundary surface between the second region and the third region be a second opening area S2, and letting the total area
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: November 24, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Takahiro Higashino, Hiromasa Tawarayama, Masatoshi Majima, Toshihiro Yoshida, Kazunari Miyamoto
  • Publication number: 20200343585
    Abstract: Provided is a solid electrolyte which contains a composition expressed by 3LiOH.Li2SO4. The solid electrolyte has a lithium ion conductivity of 0.1x10?6 S/cm or more at 25° C. and an activation energy of 0.6 eV or more.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Applicants: NAGOYA INSTITUTE OF TECHNOLOGY, NGK INSULATORS, LTD.
    Inventors: Reona MIYAZAKI, Toshihiro YOSHIDA, Satoshi OZAKI, Yosuke SATO, Yuji KATSUDA
  • Publication number: 20200266451
    Abstract: A solid-oxide-electrolysis-cell-type hydrogen production apparatus includes a cell structure including a first electrode, a second electrode, and an electrolyte layer, a gas diffusion layer disposed adjacent to the first electrode, and a gas channel plate disposed adjacent to the gas diffusion layer, in which the gas diffusion layer is formed of a porous metal body having a three-dimensional mesh-like skeleton, the gas channel plate includes a first region including a first channel, a second region including a second channel, and a third region including a third channel, the first channel includes a slit extending from the center of the gas channel plate toward its outer edge at the boundary surface between the first region and the second region, letting the total area of the first channel at the boundary surface be a first opening area S1, letting the total area of the second channel at the boundary surface between the second region and the third region be a second opening area S2, and letting the total area
    Type: Application
    Filed: May 7, 2020
    Publication date: August 20, 2020
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Takahiro HIGASHINO, Hiromasa TAWARAYAMA, Masatoshi MAJIMA, Toshihiro YOSHIDA, Kazunari MIYAMOTO
  • Publication number: 20200266494
    Abstract: Provided is a secondary battery including: a positive electrode plate composed of an inorganic material containing a positive electrode active material in an oxide form and having a thickness of 25 ?m or more; a negative electrode plate composed of an inorganic material containing a negative electrode active material in an oxide form and having a thickness of 25 ?m or more; and an inorganic solid electrolyte, the secondary battery being charged and discharged at a temperature of 100° C. or higher.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Applicant: NGK INSULATORS, LTD.
    Inventors: Yukihisa TAKEUCHI, Iwao OWADA, Yukinobu YURA, Yosuke SATO, Toshihiro YOSHIDA, Yuji KATSUDA
  • Publication number: 20200259217
    Abstract: Provided is an all-solid lithium battery including: a low-angle oriented positive electrode plate that is a lithium complex oxide sintered plate having a porosity of 10 to 50%; a negative electrode plate containing Ti and capable of intercalating and deintercalating lithium ions at 0.4 V or higher (vs. Li/Li+); and a solid electrolyte having a melting point lower than the melting point or pyrolytic temperature of the oriented positive electrode plate or the negative electrode plate, wherein at least 30% of pores in the oriented positive electrode plate is filled with the solid electrolyte in an observation of a cross-section perpendicular to a main face of the oriented positive electrode plate.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 13, 2020
    Applicant: NGK INSULATORS, LTD.
    Inventors: Yukinobu YURA, Yukihisa TAKEUCHI, Yosuke SATO, Toshihiro YOSHIDA, Yuji KATSUDA
  • Patent number: 10693143
    Abstract: A fuel cell includes a cell structure including a first electrode, a second electrode, and an electrolyte layer, a gas diffusion layer disposed adjacent to the first electrode, and a gas channel plate disposed adjacent to the gas diffusion layer, in which the gas diffusion layer is formed of a porous metal body having a three-dimensional mesh-like skeleton, the gas channel plate includes a first region including a first channel, a second region including a second channel, and a third region including a third channel, the first channel includes a slit extending from the center of the gas channel plate toward its outer edge at the boundary surface between the first region and the second region, letting the total area of the first channel at the boundary surface be a first opening area S1, letting the total area of the second channel at the boundary surface between the second region and the third region be a second opening area S2, and letting the total area of the third channel at the boundary surface between t
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: June 23, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Takahiro Higashino, Hiromasa Tawarayama, Masatoshi Majima, Toshihiro Yoshida, Kazunari Miyamoto
  • Patent number: 10581114
    Abstract: Provided is a battery-equipped device including a substrate, a device disposed on the substrate, an all-solid-state battery disposed such that the planar shape conforms to the periphery of the device on the substrate and at least partially having a complementary outer edge shape that conforms to the entire or a part of the outer edge shape of the device, and interconnections connecting the device and the all-solid-state battery. The all-solid-state battery includes a positive electrode layer containing an oriented polycrystalline positive-electrode active material composed of lithium transition metal oxide particles oriented in a certain direction, a solid electrolyte layer composed of a lithium-ion conductive material, and a negative electrode layer containing a negative-electrode active material. The present invention can provide a battery-equipped device that can significantly increase the degree of freedom of design and can output necessary electric power in a minimum space.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: March 3, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Iwao Ohwada, Toshihiro Yoshida, Kenshin Kitoh
  • Patent number: 10573904
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body adjacent to at least one of the cathode and the anode and having a three-dimensional mesh-like skeleton; a second porous metal body stacked to be adjacent to the first porous metal body and having a three-dimensional mesh-like skeleton; and an interconnector adjacent to the second porous metal body. The first porous metal body has a pore size smaller than a pore size of the second porous metal body.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 25, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Hiromasa Tawarayama, Naho Mizuhara, Takahiro Higashino, Yohei Noda, Kazunari Miyamoto, Toshihiro Yoshida
  • Patent number: 10553880
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body arranged to oppose at least one of the cathode and the anode; and an interconnector arranged to oppose the first porous metal body and having a gas supply port and a gas discharge port formed therein. The first porous metal body includes a porous metal body S that opposes the gas supply port and has a three-dimensional mesh-like skeleton, and a porous metal body H that has a three-dimensional mesh-like skeleton and is other than the porous metal body S. A porosity Ps of the porous metal body S and a porosity Ph of the porous metal body H satisfy a relationship: Ps<Ph.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 4, 2020
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Hiromasa Tawarayama, Naho Mizuhara, Takahiro Higashino, Yohei Noda, Kazunari Miyamoto, Toshihiro Yoshida
  • Patent number: 10529478
    Abstract: An air core type reactor unit, includes a first insulating plate which is provided with a first insulating spacer on one side, a first ferromagnetic member metal plate fixed to an insulating plate, two or more air core coils each having an air core part and formed of coil layers with the separation of an air gap, a second insulating plate, which is provided with a second insulating spacer on another side thereof and has a width smaller than an inside diameter of the coil, to incorporate more air into, a second ferromagnetic member metal plate fixed to an insulating plate, and an insulating stick passing through the air core part of the air core coils, wherein the air core coils are arranged in parallel, and held and fixed between the first insulating plate and the second insulating plate through the first insulating spacer and the second insulating spacer.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: January 7, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Toshihiro Yoshida, Hajime Nakatani, Daisuke Takauchi, Takashi Kumagai, Kenji Shimohata, Taichiro Tamida
  • Publication number: 20190323772
    Abstract: Air is taken out from a drying oven 1 for drying a coating film of a work piece 2, and the air is cooled such that each of at least part of moisture and at least part of a VOC which are contained in the air is condensed to be removed from the air. The air after the cooling is heated, and is returned into the drying oven 1. A heat pump 3 whose heat absorption source is the air taken out from the drying oven 1 and whose heat radiation source is the air after the cooling is provided. By using the heat pump 3, cooling and heating of the air are performed.
    Type: Application
    Filed: November 24, 2017
    Publication date: October 24, 2019
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Hidekazu KATO, Hiroki MATSUI, Toshihiro YOSHIDA, Naoto WAKU
  • Publication number: 20190221354
    Abstract: An air core type reactor unit, includes a first insulating plate which is provided with a first insulating spacer on one side, a first ferromagnetic member metal plate fixed to an insulating plate, two or more air core coils each having an air core part and formed of coil layers with the separation of an air gap, a second insulating plate, which is provided with a second insulating spacer on another side thereof and has a width smaller than an inside diameter of the coil, to incorporate more air into, a second ferromagnetic member metal plate fixed to an insulating plate, and an insulating stick passing through the air core part of the air core coils, wherein the air core coils are arranged in parallel, and held and fixed between the first insulating plate and the second insulating plate through the first insulating spacer and the second insulating spacer.
    Type: Application
    Filed: August 9, 2016
    Publication date: July 18, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Toshihiro YOSHIDA, Hajime Nakatani, Daisuke Takauchi, Takashi Kumagai, Kenji Shimohata, Taichiro Tamida
  • Publication number: 20190172622
    Abstract: A power supply device for an ozone generator, which supplies electric power to the ozone generator, is configured such that: a transformer, an inverter, and a reactor are disposed inside of one housing; a flat heat exchanger which cools passing air with cooling water is disposed at a lower part inside of the housing; the transformer and the inverter are disposed above the heat exchanger; the reactor is disposed above the transformer and the inverter; a protection panel is disposed further toward the front side of the housing than the transformer and the inverter by being separated from a front door of the housing; and cooling air is circulated in the housing by means of a fan that disposed at a position inside of the front door.
    Type: Application
    Filed: August 9, 2016
    Publication date: June 6, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Daisuke TAKAUCHI, Yoshiaki ODAI, Hajime NAKATANI, Toshihiro YOSHIDA, Takashi KUMAGAI, Kenji SHIMOHATA, Satoru ISHIZAKA, Taichiro TAMIDA
  • Publication number: 20190006681
    Abstract: A fuel cell includes a cell structure including a first electrode, a second electrode, and an electrolyte layer, a gas diffusion layer disposed adjacent to the first electrode, and a gas channel plate disposed adjacent to the gas diffusion layer, in which the gas diffusion layer is formed of a porous metal body having a three-dimensional mesh-like skeleton, the gas channel plate includes a first region including a first channel, a second region including a second channel, and a third region including a third channel, the first channel includes a slit extending from the center of the gas channel plate toward its outer edge at the boundary surface between the first region and the second region, letting the total area of the first channel at the boundary surface be a first opening area S1, letting the total area of the second channel at the boundary surface between the second region and the third region be a second opening area S2, and letting the total area of the third channel at the boundary surface between t
    Type: Application
    Filed: January 23, 2017
    Publication date: January 3, 2019
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Takahiro HIGASHINO, Hiromasa TAWARAYAMA, Masatoshi MAJIMA, Toshihiro YOSHIDA, Kazunari MIYAMOTO
  • Patent number: 10112832
    Abstract: This invention aims at improving the reliability of the electrode in an ozone generator, and also at shortening the start-up time of the ozone generator after the maintenance. The ozone generator comprising; a dielectric discharge tube, having a closed end and an open end which are faced each other, and including an electrode formed on an inner surface thereof, a sealing lid, covering the open end of the dielectric discharge tube and fixed to the dielectric discharge tube with an adhesive, a power supply brush, in inscribed contact with the electrode formed on the inner surface of the dielectric discharge tube, and a grounding electrode, arranged concentrically with the dielectric discharge tube; wherein the sealing lid includes a main body part and a cylinder part, which are connected together, and an inside diameter of the cylinder part is larger than an outside diameter of the dielectric discharge tube.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: October 30, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hajime Nakatani, Daisuke Takauchi, Naoki Hiranabe, Yoshiaki Odai, Toshihiro Yoshida