Patents by Inventor Toshikazu Yoshimura

Toshikazu Yoshimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11718523
    Abstract: The present invention provides a novel method for producing hydrogen fluoride which can suppress the occurrence of the pasty state over the whole process of producing hydrogen fluoride, reduce the problem of corrosion caused by sulfuric acid, and improve energy efficiency of the process. A method for producing hydrogen fluoride by reacting calcium fluoride and sulfuric acid comprises: (a) mixing and reacting calcium fluoride and sulfuric acid such that a mixture comprising calcium fluoride particles and sulfuric acid substantially maintains a form of particulate to obtain hydrogen fluoride while supplying sulfuric acid to the calcium fluoride particles at a flow rate of 0.002 to 1 mol/min relative to 1 mol of calcium fluoride to such an amount that a molar ratio of sulfuric acid/calcium fluoride is 0.9 to 1.1.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: August 8, 2023
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Arata Sasatani, Toshiyuki Kinoshita, Toshikazu Yoshimura, Akikazu Tabuchi, Masayoshi Imoto
  • Publication number: 20210147230
    Abstract: The present invention provides a novel method for producing hydrogen fluoride which can suppress the occurrence of the pasty state over the whole process of producing hydrogen fluoride, reduce the problem of corrosion caused by sulfuric acid, and improve energy efficiency of the process. A method for producing hydrogen fluoride by reacting calcium fluoride and sulfuric acid comprises: (a) mixing and reacting calcium fluoride and sulfuric acid such that a mixture comprising calcium fluoride particles and sulfuric acid substantially maintains a form of particulate to obtain hydrogen fluoride while supplying sulfuric acid to the calcium fluoride particles at a flow rate of 0.002 to 1 mol/min relative to 1 mol of calcium fluoride to such an amount that a molar ratio of sulfuric acid/calcium fluoride is 0.9 to 1.1.
    Type: Application
    Filed: January 27, 2021
    Publication date: May 20, 2021
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Arata SASATANI, Toshiyuki KINOSHITA, Toshikazu YOSHIMURA, Akikazu TABUCHI, Masayoshi IMOTO
  • Patent number: 10934166
    Abstract: The present invention provides a novel method for producing hydrogen fluoride which can suppress the occurrence of the pasty state over the whole process of producing hydrogen fluoride, reduce the problem of corrosion caused by sulfuric acid, and improve energy efficiency of the process. A method for producing hydrogen fluoride by reacting calcium fluoride and sulfuric acid comprises: (a) mixing and reacting calcium fluoride and sulfuric acid such that a mixture comprising calcium fluoride particles and sulfuric acid substantially maintains a form of particulate to obtain hydrogen fluoride while supplying sulfuric acid to the calcium fluoride particles at a flow rate of 0.002 to 1 mol/min relative to 1 mol of calcium fluoride to such an amount that a molar ratio of sulfuric acid/calcium fluoride is 0.9 to 1.1.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: March 2, 2021
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Arata Sasatani, Toshiyuki Kinoshita, Toshikazu Yoshimura, Akikazu Tabuchi, Masayoshi Imoto
  • Publication number: 20170158506
    Abstract: The present invention provides a novel method for producing hydrogen fluoride which can suppress the occurrence of the pasty state over the whole process of producing hydrogen fluoride, reduce the problem of corrosion caused by sulfuric acid, and improve energy efficiency of the process. A method for producing hydrogen fluoride by reacting calcium fluoride and sulfuric acid comprises: (a) mixing and reacting calcium fluoride and sulfuric acid such that a mixture comprising calcium fluoride particles and sulfuric acid substantially maintains a form of particulate to obtain hydrogen fluoride while supplying sulfuric acid to the calcium fluoride particles at a flow rate of 0.002 to 1 mol/min relative to 1 mol of calcium fluoride to such an amount that a molar ratio of sulfuric acid/calcium fluoride is 0.9 to 1.1.
    Type: Application
    Filed: July 2, 2015
    Publication date: June 8, 2017
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Arata SASATANI, Toshiyuki KINOSHITA, Toshikazu YOSHIMURA, Akikazu TABUCHI, Masayoshi IMOTO
  • Patent number: 9656864
    Abstract: The present invention provides a novel method for producing hydrogen fluoride, which is capable of using various calcium fluoride sources and preventing a second pasty state from occurring, effectively. In a method for producing hydrogen fluoride by reacting calcium fluoride with sulfuric acid, following steps are conducted: (a) a step for mixing and reacting calcium fluoride particles having an average particle diameter of 1-40 ?m with sulfuric acid at a sulfuric acid/calcium fluoride molar ratio of 0.9-1.1 under a temperature of 0-70° C. to obtain a solid-state reaction mixture; and (b) a step for heating the solid-state reaction mixture to a temperature of 100-200° C. to react with itself, and thereby producing hydrogen fluoride in a gas phase.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: May 23, 2017
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Toshikazu Yoshimura, Masayoshi Imoto, Arata Sasatani, Akikazu Tabuchi
  • Publication number: 20120107223
    Abstract: The present invention provides a novel method for producing hydrogen fluoride, which is capable of using various calcium fluoride sources and preventing a second pasty state from occurring, effectively. In a method for producing hydrogen fluoride by reacting calcium fluoride with sulfuric acid, following steps are conducted: (a) a step for mixing and reacting calcium fluoride particles having an average particle diameter of 1-40 ?m with sulfuric acid at a sulfuric acid/calcium fluoride molar ratio of 0.9-1.1 under a temperature of 0-70° C. to obtain a solid-state reaction mixture; and (b) a step for heating the solid-state reaction mixture to a temperature of 100-200° C. to react with itself, and thereby producing hydrogen fluoride in a gas phase.
    Type: Application
    Filed: June 24, 2010
    Publication date: May 3, 2012
    Applicant: Daikin Industries, Ltd.
    Inventors: Toshikazu Yoshimura, Masayoshi Imoto, Arata Sasatani, Akikazu Tabuchi
  • Patent number: 6846963
    Abstract: In a process for producing 1,1,1,3,3-pentafluoropropane which has a liquid-phase reaction step for fluorination of 1,1,1,3,3-pentahalopropane (wherein at least one of halogen atoms is not fluorine) with HF in the presence of antimony pentahalide catalyst in a reactor to obtain a reaction mixture comprising 1,1,1,3,3-pentafluoropropane and the antimony pentahalide catalyst, the fluorination is conducted at a reaction temperature less than 50° C.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: January 25, 2005
    Assignee: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Seiji Takubo, Toshikazu Yoshimura, Takashi Shibanuma
  • Publication number: 20040162451
    Abstract: In a process for producing 1,1,1,3,3-pentafluoropropane which has a liquid-phase reaction step for fluorination of 1,1,1,3,3-pentahalopropane (wherein at least one of halogen atoms is not fluorine) with HF in the presence of antimony pentahalide catalyst in a reactor to obtain a reaction mixture comprising 1,1,1,3,3-pentafluoropropane and the antimony pentahalide catalyst, the fluorination is conducted at a reaction temperature less than 50° C.
    Type: Application
    Filed: February 11, 2004
    Publication date: August 19, 2004
    Applicant: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Seiji Takubo, Toshikazu Yoshimura, Takashi Shibanuma
  • Patent number: 6392106
    Abstract: A process for producing 1,1,1,2,2-pentafluoroethane by fluorinating with hydrogen fluoride at least one of 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane as a starting material, the process being characterized by separating the reaction mixture resulting from the fluorination into a product portion A mainly containing 1,1,1,2,2-pentafluoroethane and a product portion B mainly containing 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and hydrogen fluoride, removing a fraction mainly containing 2,2-dichloro-1,1,1,2-tetrafluoroethane from the product portion B, and recycling the rest of the product portion B as part of feedstocks for fluorination. According to the process of the invention, the amount of CFC-115 contained in the target HFC-125 can be remarkably reduced through a simplified procedure.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: May 21, 2002
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoru Kono, Toshikazu Yoshimura, Takashi Shibanuma
  • Patent number: 6268541
    Abstract: The invention provides a process for the preparation of 1,1,1,2,2-pentafluoroethane by fluorinating in the gas phase a halogenated hydrocarbon feedstock containing 2-chloro-1,1,1,2-tetrafluoroethane with hydrogen fluoride, the process being characterized in that: (i) a fluorinated chromium oxide obtained by fluorinating a chromium oxide represented by the formula: CrOm (1.5<m<3) is used as the catalyst, (ii) the mixing ratio (by mole) of hydrogen fluoride to halogenated hydrocarbon feedstock ranges from 1.5 to 10, and (iii) the fluorination is conducted at a temperature of 250 to 350° C. The process makes it possible to prepare easily HFC-125 reduced in the contents of CFCs.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: July 31, 2001
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoru Kono, Takashi Shibanuma, Takashi Kanemura, Toshikazu Yoshimura, Kazuhiro Takahashi
  • Patent number: 6180840
    Abstract: A production method in which reaction processes are divided into two regions comprising one reaction region where mainly perchloroethylene is made to react with HF in a vapor phase in the presence of a catalyst and the other reaction region where HCFC-123 (CF3CHCl2) and/or HCFC-124 (CF3CFHCl) is made to react with HF in a vapor phase in the presence of a catalyst, the former region being kept at a higher pressure and the latter region at a lower pressure during the reaction procedure. By this method it is possible to keep the conversion of perchloroethylene at a high level while securing the life of a catalyst, and it is also possible to raise the selectivity of HFC-125. This is a method of producing HFC-125 in which the content of CFC-115 is lowered to not more than 15 vol % of the total amount of HFC-125 and CFC-115, and then CFC-115 is made to react with hydrogen in the presence of a catalyst.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: January 30, 2001
    Assignee: Daiken Industries Ltd.
    Inventors: Takashi Shibanuma, Yukio Homoto, Satoshi Komatsu, Toshikazu Yoshimura
  • Patent number: 6049016
    Abstract: There is provided a process for producing HFC-125 and/or HCFC-124 from PCE, characterized by the first reaction step of fluorinating PCE in the presence of catalyst in a liquid phase to form HCFC-123 and/or HCFC-122 and the second reaction step of fluorinating HCFC-123 and/or HCFC-122 in the presence of catalyst in a vapor phase to form HFC-125 and/or HCFC-124.This process is improved in the yield of objective products, and life of catalyst, and the controllability of reaction temperature.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: April 11, 2000
    Assignee: Daikin Industries Ltd.
    Inventors: Toshikazu Yoshimura, Yukio Homoto, Yasufu Yamada, Takehide Tsuda, Takashi Shibanuma
  • Patent number: 6011185
    Abstract: There is provided a process for producing HFC-125 and/or HCFC-124 from PCE, characterized by the first reaction step of fluorinating PCE in the presence of catalyst in a liquid phase to form HCFC-123 and/or HCFC-122 and the second reaction step of fluorinating HCFC-123 and/or HCFC-122 in the presence of catalyst in a vapor phase to form HFC-125 and/or HCFC-124.This process is improved in the yield of objective products, and life of catalyst, and the controllability of reaction temperature.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: January 4, 2000
    Assignee: Daikin Industries Ltd.
    Inventors: Toshikazu Yoshimura, Yukio Homoto, Yasufu Yamada, Takehide Tsuda, Takashi Shibanuma
  • Patent number: 5847244
    Abstract: A production method in which reaction processes are divided into two regions comprising one reaction region where mainly perohloroethylene is made to react with HF in a vapor phase in the presence of a catalyst and the other reaction region where HCFC-123 (CF.sub.3 CHCl.sub.2) and/or HCFC-124 (CF.sub.3 CFHCl) is made to react with HF in a vapor phase in the presence of a catalyst, the former region being kept at a higher pressure and the latter region at a lower pressure during the reaction procedure. By this method it is possible to keep the conversion of perchloroethylene at a high level while securing the life of a catalyst, and it is also possible to raise the selectivity of HFC-125. This is a method of producing HFC-125 in which the content of CFC-115 is lowered to not more than 15 vol % of the total amount of HFC-125 and CFC-115, and then CFC-115 is made to react with hydrogen in the presence of a catalyst.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: December 8, 1998
    Assignee: Daikin Industries, Ltd.
    Inventors: Takashi Shibanuma, Yukio Homoto, Satoshi Komatsu, Toshikazu Yoshimura
  • Patent number: 5750809
    Abstract: A production method in which reaction processes are divided into two regions comprising one reaction region where mainly perchloroethylene is made to react with HF in a vapor phase in the presence of a catalyst and the other reaction region where HCFC-123 (CF.sub.3 CHCl.sub.2) and/or HCFC-124 (CF.sub.3 CFHCl) is made to react with HF in a vapor phase in the presence of a catalyst, the former region being kept at a higher pressure and the latter region at a lower pressure during the reaction procedure. By this method it is possible to keep the conversion of perchloroethylene at a high level while securing the life of a catalyst, and it is also possible to raise the selectivity of HFC-125. This is a method of producing HFC-125 in which the content of CFC-115 is lowered to not more than 15 vol % of the total amount of HFC-125 and CFC-115, and then CFC-115 is made to react with hydrogen in the presence of a catalyst.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: May 12, 1998
    Assignee: Daikin Industries Ltd.
    Inventors: Takashi Shibanuma, Yukio Homoto, Satoshi Komatsu, Toshikazu Yoshimura
  • Patent number: 5710353
    Abstract: An object is to effectively preparing a fluorinated compound by developing a catalyst which is effective in the fluorination of a halogenated alkane or alkene with hydrogen fluoride by a gas phase fluorination or addition of hydrogen fluoride. To this end, a catalyst which comprises a least one element selected from the group consisting of Ti, V, Zr, Mo, Ge, Sn and Pb, and alumina, aluminum fluoride or partially fluorinated alumina is used. This catalyst is prepared by an impregnation method to support the above element on alumina and the like, or a precipitation method in which the catalyst is co-precipitated from a solution containing an aluminum compound and a compound of the above element.
    Type: Grant
    Filed: June 15, 1995
    Date of Patent: January 20, 1998
    Assignee: Daikin Industries, Ltd.
    Inventors: Takashi Shibanuma, Yasufu Yamada, Toshikazu Yoshimura, Hiroshi Momota