Patents by Inventor Toshiki Taru

Toshiki Taru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040151467
    Abstract: The present invention relates to an optical fiber having a structure which allows further improvements to be made both in terms of lower reflectance and narrower bandwidth, and to a fiber grating type filter including the optical fiber. The optical fiber applied to the fiber grating type filter comprises a core region extending along a predetermined axis, and a cladding region provided on an outer periphery of the core region. The core region does not contain any photosensitive dopant which contributes to predetermined wavelength light photosensitivity as a glass property, but a part of the cladding region contain such a photosensitive dopant. By means of this composition, it is possible to form a grating, which has a grating plane slanted by a predetermined angle with respect to the optical axis, in a part of the cladding region surrounding the core region.
    Type: Application
    Filed: December 30, 2003
    Publication date: August 5, 2004
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinji Ishikawa, Toshiki Taru, Masakazu Shigehara, Masaki Ohmura
  • Publication number: 20040139765
    Abstract: A method of producing with the collapsing process an optical fiber preform capable of forming an optical fiber in which an increment in transmission loss due to OH absorption is reduced, and an optical fiber preform and an optical fiber produced with the method. The method comprises reducing the amount of hydrogen atom-containing substances in a glass pipe, sealing one end of the glass pipe, and collapsing the glass pipe to obtain a solid body. One aspect of the method comprises heating the glass pipe at 550° C. or below, sealing one end of the glass pipe, and collapsing the glass pipe to obtain a solid body. The preform produced with the method has a feature in that its portion formed by the interface portion at the time of the collapsing contains OH groups at a concentration of 100 wt. ppb or below. The optical fiber produced by drawing the preform has a feature in that its OH-originated loss is less than 0.5 dB/km at a wavelength of 1.38 &mgr;m.
    Type: Application
    Filed: January 5, 2004
    Publication date: July 22, 2004
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaaki Hirano, Tomomi Moriya, Hideyuki Ijiri, Shinji Hasegawa, Takashi Sasaki, Toshiki Taru
  • Patent number: 6735983
    Abstract: A fiber drawing method according to the present invention is a drawing method of optical fiber for drawing an optical fiber 14 from one end of a fiber preform 13 by softening with heat, wherein the fiber preform 13 is set in a semi-closed space 10, 20 opening in part at a lower end in a fiber drawing furnace, the fiber preform 13 is heated by a heater 15 disposed on the lower end side of this semi-closed space 10, 20, and fiber drawing is carried out with adjusting a quantity of heat dissipation from the upper portion 20 of this semi-closed space.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: May 18, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Ichiro Tsuchiya, Katsuyuki Tsuneishi, Katsuya Nagayama, Kazuya Kuwahara
  • Patent number: 6728458
    Abstract: An optical fiber comprises a core region, an inner cladding region, and an outer cladding region. Each of the core region and inner cladding region is doped with GeO2, whereas the inner cladding region is also doped with F element. The core region has a refractive index higher than each of the refractive index of the inner cladding region and the refractive index of the outer cladding region. Each of the core region and inner cladding region doped with GeO2 has a UV photosensitivity. The deviation in concentration distribution of GeO2 added to the inner cladding region is so small that the deviation in UV photosensitivity in the inner cladding region is ±10% or less.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: April 27, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Shinji Ishikawa, Akira Inoue
  • Patent number: 6668592
    Abstract: A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5,5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5,5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5, 5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5, 5′) which are below the separating plates (4,17) and adapted to blow an inert gas into the inner tubes (5,5′) and the muf
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: December 30, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Katsuya Nagayama, Kazuya Kuwahara, Ichiro Tsuchiya
  • Publication number: 20030205068
    Abstract: A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5, 5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5, 5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5, 5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5, 5′) which are below the separating plates (4, 17) and adapted to blow an inert gas into the inner tubes (5, 5′) and the
    Type: Application
    Filed: May 28, 2003
    Publication date: November 6, 2003
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Toshiki Taru, Katsuya Nagayama, Kazuya Kuwahara, Ichiro Tsuchiya
  • Patent number: 6543256
    Abstract: In an optical fiber coupler making apparatus which makes an optical fiber coupler by thermally fusing a plurality of optical fibers together by use of a heater and then elongating thus thermally fused part, the heater comprises a heating element which is made of zirconia and which has a slit for containing the optical fibers. The inner face of the heating element is preferentially heated due to a characteristic of its material. Consequently, if optical fibers are contained in the fiber receiving slit, then they can be thermally fused at a sufficiently high temperature in a short period of time, whereby reducing mingling of impurities into the optical fiber coupler. Therefore, the heating element made of zirconia is effective as means for preventing impurities from mingling from the outside thereof. Also, performances of the heating element can be maintained over a long period of time even if the optical fibers are thermally fused at a high temperature.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: April 8, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Ichiro Tsuchiya
  • Publication number: 20030021533
    Abstract: The present invention provides an optical fiber equipped with a grating that functions as a narrow-band loss filter. The optical fiber has a core, an inner cladding, an intermediate cladding, and an outer cladding, which have refractive indexes n0, n1, n2, and n3, respectively, the refractive indexes having a relationship of n0>n3≧n1n2. At least a part of the inner cladding has a grating. The refractive index of the intermediate cladding is lower than the refractive indexes of the inner cladding and the outer cladding such that a recession is formed in the refractive index profile of the clad. The grating is provided on the inner side relative to the recession.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 30, 2003
    Inventors: Shinji Ishikawa, Toshiki Taru, Masakazu Shigehara, Masaki Oomura
  • Publication number: 20020118939
    Abstract: An optical fiber comprises a core region, an inner cladding region, and an outer cladding region. Each of the core region and inner cladding region is doped with GeO2, whereas the inner cladding region is also doped with F element. The core region has a refractive index higher than each of the refractive index of the inner cladding region and the refractive index of the outer cladding region. Each of the core region and inner cladding region doped with GeO2 has a UV photosensitivity. The deviation in concentration distribution of GeO2 added to the inner cladding region is so small that the deviation in UV photosensitivity in the inner cladding region is ±10% or less.
    Type: Application
    Filed: February 26, 2002
    Publication date: August 29, 2002
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Shinji Ishikawa, Akira Inoue