Patents by Inventor Toshimasa Fukai

Toshimasa Fukai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11527378
    Abstract: It is a CNT device (1) (carbon-metal structure) equipped with a carbon nanotube layer (2) (CNT layer 2; same hereafter) on a metal pedestal (4). The metal pedestal (4) is brazed to the CNT layer (2) with a brazing material layer (3) interposed therebetween. When manufacturing the CNT device (1), firstly, the CNT layer (2) is formed on a heat-resistant textured substrate (6). Next, the metal pedestal (4) is brazed to the CNT layer (2) that is on the heat-resistant textured substrate (6) with the brazing material layer (3) interposed therebetween. Then, the metal pedestal (4) (and the CNT layer 2) is peeled off the heat-resistant textured substrate (6) to transfer the CNT layer (2) from the heat-resistant textured substrate (6) to the metal pedestal (4).
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: December 13, 2022
    Assignees: WASEDA UNIVERSITY, MEIDENSHA CORPORATION
    Inventors: Suguru Noda, Sae Kitagawa, Kotaro Yasui, Hisashi Sugime, Daizo Takahashi, Yuichi Nishikiori, Hayato Ochi, Rena Takahashi, Toshimasa Fukai
  • Patent number: 11342127
    Abstract: A vacuum-capacitor-type instrument voltage transformer (1) is equipped with a main capacitor (2) and an insulating tube (3) that accommodates the main capacitor (2). A voltage dividing capacitor (4) is connected to the main capacitor (2) in series. The main capacitor (2) is equipped with a plurality of vacuum capacitors (2a) to (2c) that are connected in series. A high-voltage-side electrode (6) is provided on a high-voltage side of the insulating tube (3), and a ground-side electrode (7) is provided on its low-voltage side. The high-voltage-side electrode (6) is equipped with a high-voltage shield (8). Electrostatic capacity of the vacuum capacitor (for example, the vacuum capacitor (2a)) disposed on the high-voltage side is set to be greater than electrostatic capacity of the vacuum capacitor (for example, the vacuum capacitor (2b)) disposed on the low-voltage side.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: May 24, 2022
    Assignee: MEIDENSHA CORPORATION
    Inventors: Osamu Takeya, Yoshiyuki Tanimizu, Toshimasa Fukai, Toshinori Tatsumi, Toru Tanimizu
  • Publication number: 20210375572
    Abstract: It is a CNT device (1) (carbon-metal structure) equipped with a carbon nanotube layer (2) (CNT layer 2; same hereafter) on a metal pedestal (4). The metal pedestal (4) is brazed to the CNT layer (2) with a brazing material layer (3) interposed therebetween. When manufacturing the CNT device (1), firstly, the CNT layer (2) is formed on a heat-resistant textured substrate (6). Next, the metal pedestal (4) is brazed to the CNT layer (2) that is on the heat-resistant textured substrate (6) with the brazing material layer (3) interposed therebetween. Then, the metal pedestal (4) (and the CNT layer 2) is peeled off the heat-resistant textured substrate (6) to transfer the CNT layer (2) from the heat-resistant textured substrate (6) to the metal pedestal (4).
    Type: Application
    Filed: October 21, 2019
    Publication date: December 2, 2021
    Applicants: WASEDA UNIVERSITY, MEIDENSHA CORPORATION
    Inventors: Suguru NODA, Sae KITAGAWA, Kotaro YASUI, Hisashi SUGIME, Daizo TAKAHASHI, Yuichi NISHIKIORI, Hayato OCHI, Rena TAKAHASHI, Toshimasa FUKAI
  • Patent number: 10910184
    Abstract: In case of using multi-contacts or flat braided wires for constituting a current carrying structure of a movable part in a vacuum relay, problems tend to appear, which are enlargement of a control mechanism, complication, increased operation force and the like. The vacuum relay 1 includes an insulating cylinder 2, a first relay connecting portion 4 that is connected to one open end of the insulating cylinder 2 and has on its inner surface a first contact 3, a second relay connecting portion 5 that is arranged in the insulating cylinder 2 to face the first relay connecting portion 4, a movable member 7 that is movably arranged between the first and second relay connecting portions 4 and 5 and has a second contact that is brought into contact with the first contact when the movable member is moved toward the first relay connecting portion, and a control mechanism 8 that moves the movable member 7 in both directions to establish and break the contact between the two contacts.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: February 2, 2021
    Assignee: MEIDENSHA CORPORATION
    Inventors: Daizo Takahashi, Toshimasa Fukai, Masahiko Ieda
  • Publication number: 20200357572
    Abstract: A vacuum-capacitor-type instrument voltage transformer (1) is equipped with a main capacitor (2) and an insulating tube (3) that accommodates the main capacitor (2). A voltage dividing capacitor (4) is connected to the main capacitor (2) in series. The main capacitor (2) is equipped with a plurality of vacuum capacitors (2a) to (2c) that are connected in series. A high-voltage-side electrode (6) is provided on a high-voltage side of the insulating tube (3), and a ground-side electrode (7) is provided on its low-voltage side. The high-voltage-side electrode (6) is equipped with a high-voltage shield (8). Electrostatic capacity of the vacuum capacitor (for example, the vacuum capacitor (2a)) disposed on the high-voltage side is set to be greater than electrostatic capacity of the vacuum capacitor (for example, the vacuum capacitor (2b)) disposed on the low-voltage side.
    Type: Application
    Filed: October 16, 2018
    Publication date: November 12, 2020
    Applicant: MEIDENSHA CORPORATION
    Inventors: Osamu TAKEYA, Yoshiyuki TANIMIZU, Toshimasa FUKAI, Toshinori TATSUMI, Toru TANIMIZU
  • Publication number: 20180308651
    Abstract: In case of using multi-contacts or flat braided wires for constituting a current carrying structure of a movable part in a vacuum relay, problems tend to appear, which are enlargement of a control mechanism, complication, increased operation force and the like. The vacuum relay 1 includes an insulating cylinder 2, a first relay connecting portion 4 that is connected to one open end of the insulating cylinder 2 and has on its inner surface a first contact 3, a second relay connecting portion 5 that is arranged in the insulating cylinder 2 to face the first relay connecting portion 4, a movable member 7 that is movably arranged between the first and second relay connecting portions 4 and 5 and has a second contact that is brought into contact with the first contact when the movable member is moved toward the first relay connecting portion, and a control mechanism 8 that moves the movable member 7 in both directions to establish and break the contact between the two contacts.
    Type: Application
    Filed: June 27, 2018
    Publication date: October 25, 2018
    Applicant: MEIDENSHA CORPORATION
    Inventors: Daizo TAKAHASHI, Toshimasa FUKAI, Masahiko IEDA
  • Patent number: 10068741
    Abstract: In a vacuum chamber (1), an emitter (3) and a target (7) are opposed to each other. A guard electrode (5) is disposed around an outer circumference of an electron generating portion (31) of the emitter (3). A supporting part (4) supports the emitter (3) movably in an end-to-end direction of the vacuum chamber (1). Reforming treatment is performed on the guard electrode (5) by operating the supporting part (4), moving the emitter (3) to an open end (21) side (non-discharge position) and applying a voltage to repeatedly effect discharge on the guard electrode (5) in a state where field emission from the electron generation portion (31) is suppressed. After the reforming treatment, the supporting part (4) is again operated. The emitter (3) is moved to an open end (22) side (discharge position) and placed in a state where field emission from the electron generation portion (31) is allowed.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 4, 2018
    Assignee: MEIDENSHA CORPORATION
    Inventors: Daizo Takahashi, Toshimasa Fukai, Toru Tanimizu
  • Publication number: 20170365439
    Abstract: In a vacuum chamber (1), an emitter (3) and a target (7) are opposed to each other. A guard electrode (5) is disposed around an outer circumference of an electron generating portion (31) of the emitter (3). A supporting part (4) supports the emitter (3) movably in an end-to-end direction of the vacuum chamber (1). Reforming treatment is performed on the guard electrode (5) by operating the supporting part (4), moving the emitter (3) to an open end (21) side (non-discharge position) and applying a voltage to repeatedly effect discharge on the guard electrode (5) in a state where field emission from the electron generation portion (31) is suppressed. After the reforming treatment, the supporting part (4) is again operated. The emitter (3) is moved to an open end (22) side (discharge position) and placed in a state where field emission from the electron generation portion (31) is allowed.
    Type: Application
    Filed: December 22, 2015
    Publication date: December 21, 2017
    Applicant: MEIDENSHA CORPORATION
    Inventors: Daizo TAKAHASHI, Toshimasa FUKAI, Toru TANIMIZU
  • Patent number: 9589751
    Abstract: Conventional example is arranged simply to turn a circuit on/off, and not to changeover connection. Sealed relay 1 comprises: insulating tube 2; first relay connect portion 4 attached to one end of insulating tube 2, and provided with first contact 3 on inside surface; second relay connect portion 5 disposed in confrontation with first relay connect portion 4 in insulating tube 2; movable member 7 disposed movably between first and second relay connect portions 4 and 5, and provided with second contact 6 contacting with first contact 3 when moved toward the first relay connect portion; and operating mechanism to move the movable member. Third relay connect portion 10 including third contact 9 is provided between the second and first relay connect portions. Movable member 7 includes a fourth contact contacting with the third contact when the first and second contacts are out of contact from each other.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: March 7, 2017
    Assignee: MEIDENSHA CORPORATION
    Inventors: Daizo Takahashi, Toshimasa Fukai, Masahiko Ieda
  • Publication number: 20160133419
    Abstract: In case of using multi-contacts or flat braided wires for constituting a current carrying structure of a movable part in a s vacuum relay, problems tend to appear, which are enlargement of a control mechanism, complication, increased operation force and the like. The vacuum relay 1 includes an insulating cylinder 2, a first relay connecting portion 4 that is connected to one open end of the insulating cylinder 2 and has on its inner surface a first to contact 3, a second relay connecting portion 5 that is arranged in the insulating cylinder 2 to face the first relay connecting portion 4, a movable member 7 that is movably arranged between the first and second relay connecting portions 4 and 5 and has a second contact that is brought into contact with the first contact when the movable member is moved toward the first relay connecting portion, and a control mechanism 8 that moves the movable member 7 in both directions to establish and break the contact between the two contacts.
    Type: Application
    Filed: May 28, 2014
    Publication date: May 12, 2016
    Applicant: MEIDENSHA CORPORATION
    Inventors: Daizo TAKAHASHI, Toshimasa FUKAI, Masahiko IEDA
  • Publication number: 20160133405
    Abstract: Conventional example is arranged simply to turn a circuit on/off, and not to changeover connection. Sealed relay 1 comprises: insulating tube 2; first relay connect portion 4 attached to one end of insulating tube 2, and provided with first contact 3 on inside surface; second relay connect portion 5 disposed in confrontation with first relay connect portion 4 in insulating tube 2; movable member 7 disposed movably between first and second relay connect portions 4 and 5, and provided with second contact 6 contacting with first contact 3 when moved toward the first relay connect portion; and operating mechanism to move the movable member. Third relay connect portion 10 including third contact 9 is provided between the second and first relay connect portions. Movable member 7 includes a fourth contact contacting with the third contact when the first and second contacts are out of contact from each other.
    Type: Application
    Filed: May 28, 2014
    Publication date: May 12, 2016
    Applicant: MEIDENSHA CORPORATION
    Inventors: Daizo TAKAHASHI, Toshimasa FUKAI, Masahiko IEDA
  • Patent number: 9159488
    Abstract: [Task] The present invention aims to provide a vacuum capacitor instrument voltage transformer by which current and voltage can be much precisely measured. [Means for achieving task] The means is so made that a main capacitor portion 8 and a voltage dividing capacitor portion 10 are installed in a earthed vacuum vessel, a main ground circuit 30 is provided through which a leak current I2 flows from an outer surface of the primary line-path side vacuum vessel to the earth E, and a voltage dividing ground circuit 31 is provided through which a leak current I11 flows to the earth E through a voltage dividing insulating cylindrical member 11 that is disposed between an earthed portion and each of the main capacitor portion and the voltage dividing capacitor portion.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 13, 2015
    Assignees: MEIDENSHA CORPORATION, TC-TANIC, INCORPORATED
    Inventors: Toru Tanimizu, Toru Nishizawa, Toshimasa Fukai, Kaoru Kitakizaki, Takayoshi Tanimura
  • Patent number: 8755166
    Abstract: A vacuum capacitor includes a fixed electrode, a movable electrode, a movable electrode shaft, a magnetic flux receiving unit, a magnetic flux generating unit and a capacitance control unit. The fixed electrode is formed from a plurality of electrode members in a vacuum casing. The movable electrode is formed from a plurality of electrode members arranged in gaps formed between the electrode members of the fixed electrode in the vacuum casing. The movable electrode shaft supports the movable electrode. Capacitance appearing between the movable electrode and the fixed electrode is varied by rotation of the movable electrode shaft. The magnetic flux receiving unit rotates the movable electrode shaft in the vacuum casing. The magnetic flux generating unit is located outside the vacuum casing and rotates the magnetic flux receiving unit by magnetic attraction. The capacitance control unit rotates the magnetic flux generating unit.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 17, 2014
    Assignee: Meidensha Corporation
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Toshinori Tatsumi, Yuichi Nishikiori, Kaoru Kitakizaki, Toru Tanimizu
  • Patent number: 8749946
    Abstract: A vacuum capacitor includes a fixed electrode, a movable electrode, a movable electrode shaft, a magnetic flux receiving unit, a magnetic flux generating unit and a capacitance control unit. A plurality of electrode members in a vacuum casing form the fixed electrode. The fixed electrode is divided into a plurality of fixed electrodes, and each fixed electrode is lead outside the vacuum casing and electrically connected to each other in series. A plurality of electrode members arranged in gaps between the electrode members of the fixed electrode form the movable electrode. Rotating the movable electrode shaft, which supports the movable electrode, varies capacitance between the movable electrode and the fixed electrode. The magnetic flux receiving unit rotates the movable electrode shaft. The magnetic flux generating unit, located outside the vacuum casing, rotates the magnetic flux receiving unit by magnetic attraction. The capacitance control unit rotates the magnetic flux generating unit.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 10, 2014
    Assignee: Meidensha Corporation
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Toshinori Tatsumi, Yuichi Nishikiori, Kaoru Kitakizaki, Toru Tanimizu
  • Patent number: 8749947
    Abstract: The present invention can easily adjust capacitance of a vacuum capacitor while maintaining a vacuum state in a vacuum chamber of the vacuum capacitor. A fixed electrode 4 is formed by arranging a plurality of flat electrode members 5 in layers at a certain distance in an axial direction of a vacuum chamber 1b. A movable electrode 7 is formed by arranging a plurality of flat electrode members 8 in layers at a certain distance in the axial direction of the vacuum chamber 1b and fixing the electrode members 8 to a movable electrode shaft 9. By rotation of the movable electrode shaft 9, each electrode member 8 is inserted into and extracted from a gap between the electrode members 5 of the fixed electrode 4 in noncontact with the electrode members 5 of the fixed electrode 4. A magnetic flux receiving portion 106b is fixed to a seal member 102 side of a disk member 106a that is provided at the movable electrode shaft 9.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: June 10, 2014
    Assignee: Meidensha Corporation
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Toshinori Tatsumi, Yuichi Nishikiori, Kaoru Kitakizaki
  • Publication number: 20130038978
    Abstract: The present invention can easily adjust capacitance of a vacuum capacitor while maintaining a vacuum state in a vacuum chamber of the vacuum capacitor. A fixed electrode 4 is formed by arranging a plurality of flat electrode members 5 in layers at a certain distance in an axial direction of a vacuum chamber 1b. A movable electrode 7 is formed by arranging a plurality of flat electrode members 8 in layers at a certain distance in the axial direction of the vacuum chamber 1b and fixing the electrode members 8 to a movable electrode shaft 9. By rotation of the movable electrode shaft 9, each electrode member 8 is inserted into and extracted from a gap between the electrode members 5 of the fixed electrode 4 in noncontact with the electrode members 5 of the fixed electrode 4. A magnetic flux receiving portion 106b is fixed to a seal member 102 side of a disk member 106a that is provided at the movable electrode shaft 9.
    Type: Application
    Filed: March 28, 2011
    Publication date: February 14, 2013
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Toshinori Tatsumi, Yuichi Nishikiori, Kaoru Kitakizaki
  • Publication number: 20120153932
    Abstract: [Task] The present invention aims to provide a vacuum capacitor instrument voltage transformer by which current and voltage can be much precisely measured. [Means for Achieving Task] The means is so made that a main capacitor portion 8 and a voltage dividing capacitor portion 10 are installed in a earthed vacuum vessel, a main ground circuit 30 is provided through which a leak current I2 flows from an outer surface of the primary line-path side vacuum vessel to the earth E, and a voltage dividing ground circuit 31 is provided through which a leak current I11 flows to the earth E through a voltage dividing insulating cylindrical member 11 that is disposed between an earthed portion and each of the main capacitor portion and the voltage dividing capacitor portion.
    Type: Application
    Filed: September 1, 2010
    Publication date: June 21, 2012
    Inventors: Toru Tanimizu, Toru Nishizawa, Toshimasa Fukai, Kaoru Kitakizaki, Takayoshi Tanimura
  • Publication number: 20110235231
    Abstract: [Object] An object of the present invention is to provide a vacuum capacitor, a vacuum state of a vacuum chamber of which is maintained without bellows etc., and whose capacitance is easily adjustable, and a decrease of life of which is lessened. [Means to Solve] A fixed electrode 4 is formed by arranging a plurality of flat electrode members 5 in layers at a certain distance in an axial direction of a vacuum chamber 1b in the vacuum chamber 1b.
    Type: Application
    Filed: November 19, 2009
    Publication date: September 29, 2011
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Toshinori Tatsumi, Yuichi Nishikiori, Kaoru Kitakizaki, Toru Tanimizu
  • Publication number: 20110228441
    Abstract: [Object] An object of the present invention is to provide a vacuum capacitor, a vacuum state of a vacuum chamber of which is maintained without bellows etc., and whose capacitance is easily adjustable, and a decrease of life of which is lessened. [Means to solve] A fixed electrode 4 is formed by arranging a plurality of flat electrode members 5 in layers at a certain distance in an axial direction of a vacuum chamber 1b in the vacuum chamber 1b.
    Type: Application
    Filed: November 19, 2009
    Publication date: September 22, 2011
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Toshinori Tatsumi, Yuichi Nishikiori, Kaoru Kitakizaki, Toru Tanimizu
  • Patent number: 7091807
    Abstract: An attraction coil, a repulsion coil and a plunger are disposed in a magnetic path of an electromagnetic device. An starting flux generating section is disposed between the attraction coil and the repulsion coil in the magnetic path. A magnetic flux of the starting flux generating section is repulsed magnetically by a magnetic flux of the repulsion coil at a part of the magnetic path to start the plunger. The plunger is attracted to one of first and second magnetic path parts by electromagnetic forces generated from magnetic fluxes of the attraction coil and the repulsion coil.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: August 15, 2006
    Assignees: Japan AE Power Systems Corporation, Technical Consulting Tanimizu Ltd.
    Inventors: Toru Tanimizu, Toyohisa Tsuruta, Toshimasa Fukai, Akira Nishijima, Hiroshi Fujimaki, Yoshiyuki Tanimizu