Patents by Inventor Toshimasa Tomokiyo

Toshimasa Tomokiyo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8133544
    Abstract: A high-strength quenched formed body containing a layer on the surface of an after-quenching formed-body steel material in which layer Zn is a major component and which layer contains 30% by mass or less of Fe, and which layer is present in an amount of 30 g/m2 or more. A quenched formed body is produced by quenching a zinc-plated steel material which includes a zinc-plated layer containing each of Al and Si having alloying-retarding function and readily-oxidizing function independently or compositely, in an amount of 0.15% by mass or more, after heating it to 800° C. or more and 950° C. or less in an oxidizing atmosphere containing 0.1% by volume or more of oxygen.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: March 13, 2012
    Assignees: Aisin Takaoka Co., Ltd., Nippon Steel Corporation
    Inventors: Shinichi Suzuki, Toshimasa Tomokiyo, Shuuji Souma, Katsuji Nakashima, Masashi Ozawa, Kiyohito Kondou
  • Publication number: 20120031528
    Abstract: This high-strength steel sheet includes: in terms of percent by mass, 0.03 to 0.10% of C; 0.01 to 1.5% of Si; 1.0 to 2.5% of Mn; 0.1% or less of P; 0.02% or less of S; 0.01 to 1.2% of Al; 0.06 to 0.15% of Ti; and 0.01% or less of N; and contains as the balance, iron and inevitable impurities, wherein a tensile strength is in a range of 590 MPa or more, and a ratio between the tensile strength and a yield strength is in a range of 0.80 or more, a microstructure includes bainite at an area ratio of 40% or more and the balance being either one or both of ferrite and martensite, a density of Ti(C,N) precipitates having sizes of 10 nm or smaller is in a range of 1010 precipitates/mm3 or more, and a ratio (Hvs/Hvc) of a hardness (Hvs) at a depth of 10 ?m from a surface to a hardness (Hvc) at a center of a sheet thickness is in a range of 0.85 or more.
    Type: Application
    Filed: May 26, 2010
    Publication date: February 9, 2012
    Inventors: Kunio Hayashi, Toshimasa Tomokiyo, Nobuhiro Fujita, Naoki Matsutani, Koichi Goto
  • Publication number: 20110303328
    Abstract: A high-strength quenched formed article has a zinc plating layer which is formed at a post-quenching formed steel sheet surface, and which contains 30 g/m2 or more of a phase that contains 5% or more by mass but 30% or less by mass of Fe, and which also contains 0.15% or more by mass but less than 2% by mass of at least one of Al and Si in a separate fashion or a composite fashion, and contains Zn, which makes up substantially a rest portion of the zinc plating layer, and an inevitable impurity, wherein the high-strength quenched formed article has a high-strength portion having a post-quenching-formation tensile strength of 1000 MPa or more, and a low-strength portion having a post-quenching-formation tensile strength of 800 MPa or less.
    Type: Application
    Filed: February 1, 2010
    Publication date: December 15, 2011
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN TAKAOKA CO., LTD., NIPPON STEEL CORPORATION
    Inventors: Masaaki Kondo, Shinichi Suzuki, Toshimasa Tomokiyo, Koichi Nishizawa, Takayuki Suzuki, Yuki Ishiguro, Hideyuki Kai
  • Publication number: 20110117382
    Abstract: In zinc-system-plated steel materials, a high-strength quenched formed body, in which the corrosion resistance of after-quenching formed products is equal to or more than that of cold-molded products, and a production process for the same are provided. The high-strength quenched formed body contains a layer, in which Zn is a major component and which is formed of Fe: 30% by mass or less, in an amount of 30 g/m2 or more on the surface of an after-quenching formed-body steel material, and accordingly is good in corrosion resistance. A quenched formed body is produced by quenching a zinc-plated steel material, which includes a zinc-plated layer which contains each of Al and Si having alloying-retarding function and readily-oxidizing function independently or compositely, in an amount of 0.15% by mass or more, after heating it to 800° C. or more and 950° C. or less in an oxidizing atmosphere of oxygen: 0.1% by volume or more.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 19, 2011
    Applicant: AISIN TAKAOKA CO., LTD.
    Inventors: SHINICHI SUZUKI, TOSHIMASA TOMOKIYO, SHUUJI SOUMA, KATSUJI NAKASHIMA, MASASHI OZAWA, KIYOHITO KONDOU
  • Patent number: 7892605
    Abstract: A high-strength quenched formed body containing a layer on the surface of an after-quenching formed-body steel material in which layer Zn is a major component and which layer contains 30% by mass or less of Fe, and which layer is present in an amount of 30 g/m2 or more. A quenched formed body is produced by quenching a zinc-plated steel material which includes a zinc-plated layer containing each of Al and Si having alloying-retarding function and readily-oxidizing function independently or compositely, in an amount of 0.15% by mass or more, after heating it to 800° C. or more and 950° C. or less in an oxidizing atmosphere containing 0.1% by volume or more of oxygen.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: February 22, 2011
    Assignees: Aisin Takaoka Co., Ltd., Nippon Steel Corporation
    Inventors: Shinichi Suzuki, Toshimasa Tomokiyo, Shuuji Souma, Katsuji Nakashima, Masashi Ozawa, Kiyohito Kondou
  • Publication number: 20100326570
    Abstract: A high-strength quenched formed body containing a layer on the surface of an after-quenching formed-body steel material in which layer Zn is a major component and which layer contains 30% by mass or less of Fe, and which layer is present in an amount of 30 g/m2 or more. A quenched formed body is produced by quenching a zinc-plated steel material which includes a zinc-plated layer containing each of Al and Si having alloying-retarding function and readily-oxidizing function independently or compositely, in an amount of 0.15% by mass or more, after heating it to 800° C. or more and 950° C. or less in an oxidizing atmosphere containing 0.1% by volume or more of oxygen.
    Type: Application
    Filed: September 13, 2010
    Publication date: December 30, 2010
    Applicants: AISIN TAKAOKA CO., LTD., NIPPON STEEL CORPORATION
    Inventors: Shinichi Suzuki, Toshimasa Tomokiyo, Shuuji Souma, Katsuji Nakashima, Masashi Ozawa, Kiyohito Kondou
  • Publication number: 20080075970
    Abstract: In zinc-system-plated steel materials, a high-strength quenched formed body, in which the corrosion resistance of after-quenching formed products is equal to or more than that of cold-molded products, and a production process for the same are provided. The high-strength quenched formed body contains a layer, in which Zn is a major component and which is formed of Fe: 30% by mass or less, in an amount of 30 g/m2 or more on the surface of an after-quenching formed-body steel material, and accordingly is good in corrosion resistance. A quenched formed body is produced by quenching a zinc-plated steel material, which includes a zinc-plated layer which contains each of Al and Si having alloying-retarding function and readily-oxidizing function independently or compositely, in an amount of 0.15% by mass or more, after heating it to 800° C. or more and 95° C. or less in an oxidizing atmosphere of oxygen: 0.1% by volume or more.
    Type: Application
    Filed: July 8, 2005
    Publication date: March 27, 2008
    Applicant: Aisin Takaoka Co., Ltd.
    Inventors: Shinichi Suzuki, Toshimasa Tomokiyo, Shuuji Souma, Katsuji Nakashima, Masashi Ozawa, Kiyohito Kondou
  • Patent number: 6428631
    Abstract: A high-strength steel sheet having excellent fatigue property, excellent formability and resistance to softening of the heat affected zone after welding, comprising: 0.01 to 0.15 mass % of C, 0.005 to 1.0 mass % of Si, 0.1 to 2.2 mass % of Mn, 0.001 to 0.06 mass % of P, 0.001 to 0.01 mass % of S, 0.0005 to 0.01 mass % of N, 0.001 to 0.1 mass % of Al, 0.005 to 0.05 mass % of Nb, 0.05 to 0.5 mass % of Mo, when necessary, 0.001 to 0.02 mass % of Ti, 0.2 to 2.0 mass % of Cu and 0.05 to 2.0 mass % of Ni, and the remainder of Fe, wherein the components satisfy the following expression (A). 0.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: August 6, 2002
    Assignee: Nippon Steel Corporation
    Inventors: Toshimasa Tomokiyo, Hirokazu Taniguchi, Ryo Maruta