Patents by Inventor Toshimichi Takahashi

Toshimichi Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10732076
    Abstract: In a type of vehicle restraint device where a vehicle is restrained on rollers of a vehicle testing device by using wire ropes, etc., it was necessary to provide the vehicle with hook portions for engaging the wire ropes, etc. and difficult to reproduce the vehicle pitching movement behavior due to pressing the vehicle against the rollers by the wire ropes, etc. Thus, vehicle restraint device 11 that restrains vehicle 1 placed on rollers 7 of a vehicle testing device is equipped with a pair of vehicle restraint jigs 12 each having one end side rotatably coupled to vehicle 1 and the other end side rotatably coupled to left or right pole 10 on floor surface 9, and second link mechanism 501 that couples the other end side of this vehicle restraint jig 12 to pole 10 to allow a yawing movement of vehicle restraint jig 12.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: August 4, 2020
    Assignee: MEIDENSHA CORPORATION
    Inventors: Toshimichi Takahashi, Masao Furusawa
  • Publication number: 20200200627
    Abstract: A control device of a dynamometer system includes a mechanical loss arithmetic unit that generates a loss compensation signal corresponding to loss torque generated in a dynamometer body in a state where a load is connected, on the basis of an angular velocity detection signal, a characteristic vibration suppression control circuit that generates a compensation signal in order to suppress a characteristic vibration of a swinging element, and a torque current command signal generating unit that generates a torque current command signal by subtracting the compensation signal from an upper level torque command signal. The characteristic vibration suppression control circuit is provided with a normative model arithmetic unit, deviation compensator, model input generating unit, and differential compensator that generates a correction signal by subjecting a torque signal obtained by the normative model arithmetic unit to a differential operation.
    Type: Application
    Filed: May 9, 2018
    Publication date: June 25, 2020
    Inventor: Toshimichi TAKAHASHI
  • Publication number: 20200191671
    Abstract: A heat insulation plate (25) is interposed between a coupling (21) and an adapter flange (22) in a main shaft (6) of a dynamometer (3). A torque meter (24) is disposed between a coupling flange (23) that serves as a test-piece connection surface (56) and the adapter flange (22). To surround a periphery of these, a cover (7) is provided. An air conditioner utilizing a refrigeration cycle supplies a cold wind to an inside space of the cover (7). The heat insulation plate (25) suppresses heat transmission from an electric motor of the dynamometer (3) to the torque meter (24). Therefore, the torque meter (24) is effectively cooled by the cold wind.
    Type: Application
    Filed: April 6, 2018
    Publication date: June 18, 2020
    Applicant: MEIDENSHA CORPORATION
    Inventors: Toshimichi TAKAHASHI, Yoshinori FUJIMOTO, Yuki UGAMOCHI, Nobuo OKAZAKI
  • Patent number: 10648890
    Abstract: A vehicle restraint apparatus is for restraining a vehicle 1 on one or more rollers 7 of a vehicle test system. The vehicle restraint apparatus 11 includes a vehicle restraining jig 12 to connect the vehicle 1 with a pole 10 on a floor 9, and a deflection absorbing mechanism 90 to absorb deflection of the vehicle restraining jig 12 produced at the time of vehicle test with the vehicle test system.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: May 12, 2020
    Assignee: MEIDENSHA CORPORATION
    Inventors: Toshimichi Takahashi, Masao Furusawa
  • Publication number: 20180299350
    Abstract: In a type of vehicle restraint device where a vehicle is restrained on rollers of a vehicle testing device by using wire ropes, etc., it was necessary to provide the vehicle with hook portions for engaging the wire ropes, etc. and difficult to reproduce the vehicle pitching movement behavior due to pressing the vehicle against the rollers by the wire ropes, etc. Thus, vehicle restraint device 11 that restrains vehicle 1 placed on rollers 7 of a vehicle testing device is equipped with a pair of vehicle restraint jigs 12 each having one end side rotatably coupled to vehicle 1 and the other end side rotatably coupled to left or right pole 10 on floor surface 9, and second link mechanism 501 that couples the other end side of this vehicle restraint jig 12 to pole 10 to allow a yawing movement of vehicle restraint jig 12.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 18, 2018
    Applicant: MEIDENSHA CORPORATION
    Inventors: Toshimichi TAKAHASHI, Masao FURUSAWA
  • Publication number: 20160313214
    Abstract: A vehicle restraint apparatus is for restraining a vehicle 1 on one or more rollers 7 of a vehicle test system. The vehicle restraint apparatus 11 includes a vehicle restraining jig 12 to connect the vehicle 1 with a pole 10 on a floor 9, and a deflection absorbing mechanism 90 to absorb deflection of the vehicle restraining jig 12 produced at the time of vehicle test with the vehicle test system.
    Type: Application
    Filed: December 4, 2014
    Publication date: October 27, 2016
    Applicant: MEIDENSHA CORPORATION
    Inventors: Toshimichi TAKAHASHI, Masao FURUSAWA
  • Publication number: 20160313213
    Abstract: A vehicle restraint apparatus is for restraining a vehicle 1 on one or more rollers 7 of a vehicle test system. The vehicle restraint apparatus 11 includes a pair of vehicle restraining jigs whose first ends are joined with left and right seatbelt fixing pillars 2 of the vehicle 1, respectively, and whose second ends are joined with left and right poles 10 on a floor, respectively.
    Type: Application
    Filed: December 4, 2014
    Publication date: October 27, 2016
    Applicant: MEIDENSHA CORPORATION
    Inventors: Toshimichi TAKAHASHI, Masao FURUSAWA
  • Patent number: 9335228
    Abstract: Provided is a dynamometer system control device capable of stable and highly responsive control. This dynamometer system control device is provided with a torque control device which outputs a torque command signal on the basis of an output signal (LC_det) of a load cell, and with a characteristic vibration suppression circuit which corrects the torque command signal to suppress the characteristic vibration of an oscillator and which inputs said signal to an inverter as a control input signal. The circuit is provided with a differential compensator which performs a differentiation operation on a load cell approximation signal (Pmdl_det) calculated using an approximation equation in a secondary delay canonical form in a vibration output calculation unit, and with a subtractor which corrects the torque command signal by subtracting the output signal from the compensator from the torque command signal (Tdy_ref).
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 10, 2016
    Assignee: Meidensha Corporation
    Inventor: Toshimichi Takahashi
  • Patent number: 9255856
    Abstract: Provided is a dynamometer system provided with a shaft-torque meter, and capable of an equivalent evaluation to that of a system provided with a load cell. A dynamometer system is provided with an encoder for detecting the angular velocity, a shaft-torque meter for detecting the shaft torque, and a control device (6A) for controlling the dynamometer on the basis of the angular velocity (omegaM) of the dynamometer and the detection value (Tsh) of the shaft-torque meter. The torque-control device (6A) is provided with: a computed-torque calculation unit (61A) for calculating a computed-torque value (Tcal) by adding the detection value (Tsh) to a value obtained by multiplying the angular acceleration (omegaMss) by the moment of inertia (TM); and a computed-torque controller (62A) for calculating a torque-current-command value (Tdyref), on the basis of an externally inputted command value (Tref) and a computed-torque value (Tcal).
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: February 9, 2016
    Assignee: Meidensha Corporation
    Inventor: Toshimichi Takahashi
  • Patent number: 9257934
    Abstract: To perform an anti-windup control without interference with a cross current compensating function even in case of voltage saturation. There is provided a feedback value calculating section to calculate an average of voltage commands V1_cmd, V2_cmd after output limitation, as a feedback value. As a deviation used for an integral calculation of a current control section 6a, 6b, a sum obtained by adding a product to a deviation between a current command value Id_cmd, Iq_cmd and a current detection value Id_det, Iq_det is used. The product is a quantity obtained by multiplying a saturation quantity by a feedback gain Kfb. The saturation quantity is a saturation quantity of an operation quantity limited by a voltage command limiting section 3a, 3b, and the saturation quantity is a deviation or difference between a feedback value V_fb (Vd_fb, Vq_fb) and the voltage command Vd_cmd.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: February 9, 2016
    Assignee: MEIDENSHA CORPORATION
    Inventors: Shizunori Hamada, Toshimichi Takahashi
  • Patent number: 9164005
    Abstract: Provided is a dynamometer system capable of stable speed control and position control even in instances of large load inertia. A speed-control device (6C) in a dynamometer system is provided with: a speed-control-circuit unit (61A) for calculating a torque-current-command value (T2) on the basis of an angular-velocity-command value (?ref) and the angular velocity (?M) of the dynamometer; a disturbance-observer-compensation unit (63C) for correcting the torque-current-command value by subtracting a disturbance observer (Tobs) from the torque-current-command value (T2); and a shaft-torque-detection-compensation unit (62A) for correcting the torque-current-command value by adding a shaft-torque-detection-compensation amount (Tsh_K), which is obtained by multiplying a filter transfer function (GBPF) and a control gain (K1) by a shaft-torque-detection value (Tsh), to a torque-current-command value (T1).
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 20, 2015
    Assignee: MEIDENSHA CORPORATION
    Inventor: Toshimichi Takahashi
  • Patent number: 9143073
    Abstract: Position control device for electric motor inputs deviation signal between angle command and angle detection value to position control section and calculates angular velocity command, inputs deviation signal between this angular velocity command and angular velocity detection value to speed control section and calculates torque current command, and controls, according to this torque current command, the electric motor current control section.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: September 22, 2015
    Assignee: MEIDENSHA CORPORATION
    Inventors: Toshimichi Takahashi, Kuniaki Hirao, Shizunori Hamada, Yasuhiro Kanazashi
  • Publication number: 20150219510
    Abstract: Provided is a dynamometer system control device capable of stable and highly responsive control. This dynamometer system control device is provided with a torque control device which outputs a torque command signal on the basis of an output signal (LC_det) of a load cell, and with a characteristic vibration suppression circuit which corrects the torque command signal to suppress the characteristic vibration of an oscillator and which inputs said signal to an inverter as a control input signal. The circuit is provided with a differential compensator which performs a differentiation operation on a load cell approximation signal (Pmdl_det) calculated using an approximation equation in a secondary delay canonical form in a vibration output calculation unit, and with a subtractor which corrects the torque command signal by subtracting the output signal from the compensator from the torque command signal (Tdy_ref).
    Type: Application
    Filed: May 28, 2013
    Publication date: August 6, 2015
    Applicant: MEIDENSHA CORPORATION
    Inventor: Toshimichi Takahashi
  • Publication number: 20150101421
    Abstract: Provided is a dynamometer system capable of stable speed control and position control even in instances of large load inertia. A speed-control device (6C) in a dynamometer system is provided with: a speed-control-circuit unit (61A) for calculating a torque-current-command value (T2) on the basis of an angular-velocity-command value (?ref) and the angular velocity (?M) of the dynamometer; a disturbance-observer-compensation unit (63C) for correcting the torque-current-command value by subtracting a disturbance observer (Tobs) from the torque-current-command value (T2); and a shaft-torque-detection-compensation unit (62A) for correcting the torque-current-command value by adding a shaft-torque-detection-compensation amount (Tsh_K), which is obtained by multiplying a filter transfer function (GBPF) and a control gain (K1) by a shaft-torque-detection value (Tsh), to a torque-current-command value (T1).
    Type: Application
    Filed: February 27, 2013
    Publication date: April 16, 2015
    Applicant: Meidensha Corporation
    Inventor: Toshimichi Takahashi
  • Publication number: 20150039246
    Abstract: Provided is a dynamometer system provided with a shaft-torque meter, and capable of an equivalent evaluation to that of a system provided with a load cell. A dynamometer system is provided with an encoder for detecting the angular velocity, a shaft-torque meter for detecting the shaft torque, and a control device (6A) for controlling the dynamometer on the basis of the angular velocity (omegaM) of the dynamometer and the detection value (Tsh) of the shaft-torque meter. The torque-control device (6A) is provided with: a computed-torque calculation unit (61A) for calculating a computed-torque value (Tcal) by adding the detection value (Tsh) to a value obtained by multiplying the angular acceleration (omegaMss) by the moment of inertia (JM); and a computed-torque controller (62A) for calculating a torque-current-command value (Tdyref), on the basis of an externally inputted command value (Tref) and a computed-torque value (Tcal).
    Type: Application
    Filed: February 27, 2013
    Publication date: February 5, 2015
    Inventor: Toshimichi Takahashi
  • Publication number: 20140334204
    Abstract: To perform an anti-windup control without interference with a cross current compensating function even in case of voltage saturation. There is provided a feedback value calculating section to calculate an average of voltage commands V1_cmd, V2_cmd after output limitation, as a feedback value. As a deviation used for an integral calculation of a current control section 6a, 6b, a sum obtained by adding a product to a deviation between a current command value Id_cmd, Iq_cmd and a current detection value Id_det, Iq_det is used. The product is a quantity obtained by multiplying a saturation quantity by a feedback gain Kfb. The saturation quantity is a saturation quantity of an operation quantity limited by a voltage command limiting section 3a, 3b, and the saturation quantity is a deviation or difference between a feedback value V_fb (Vd_fb, Vq_fb) and the voltage command Vd_cmd.
    Type: Application
    Filed: December 11, 2012
    Publication date: November 13, 2014
    Applicant: Meidensha Corporation
    Inventors: Shizunori Hamada, Toshimichi Takahashi
  • Publication number: 20130229137
    Abstract: Position control device for electric motor inputs deviation signal between angle command and angle detection value to position control section and calculates angular velocity command, inputs deviation signal between this angular velocity command and angular velocity detection value to speed control section and calculates torque current command, and controls, according to this torque current command, the electric motor current control section.
    Type: Application
    Filed: November 18, 2011
    Publication date: September 5, 2013
    Inventors: Toshimichi Takahashi, Kuniaki Hirao, Shizunori Hamada, Yasuhiro Kanazashi
  • Publication number: 20070029872
    Abstract: An object is to provide a wheel action force detection system and a wheel action force detection method for finding braking force of a vehicle having a disc brake at the time of braking with high accuracy.
    Type: Application
    Filed: August 2, 2006
    Publication date: February 8, 2007
    Inventors: Fumito Kurata, Toshimichi Takahashi, Mitsuru Asai, Hiroaki Makino, Nobutsuna Motohashi
  • Patent number: 6014418
    Abstract: A fuel rod for a light water reactor comprises a cladding tube which comprises a zirconium alloy having a composition including 0.6 to 2.0% by weight of Nb, 0.5 to 1.5% by weight of Sn, 0.05 to 0.3% by weight of Fe, and the balance being Zr and incidental impurities; uranium oxide fuel pellets packed in the cladding tube; and end plugs comprising a zirconium alloy and closing both ends of the cladding tube. The cladding tube is sealed by TIG welding with the end plugs. Grain boundaries in each heat affected zone of the cladding tube, which are adjacent to a bead formed by TIG welding, have structural compositions including 4 to 30% by weight of Nb, and 0.9 to 20% by weight of Fe.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: January 11, 2000
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd, Mitsubishi Nuclear Fuel Co., Ltd.
    Inventors: Takeshi Isobe, Yoshiharu Mae, Toshimichi Takahashi, Yoshitaka Suda, Akio Sando, Eiji Yoneda
  • Patent number: 5912935
    Abstract: A fuel rod for a light water reactor comprises a cladding tube which comprises a zirconium alloy having a composition including 0.6 to 2.0% by weight of Nb, 0.5 to 1.5% by weight of Sn, 0.05 to 0.3% by weight of Fe, and the balance being Zr and incidental impurities; uranium oxide fuel pellets packed in the cladding tube; and end plugs closing both ends of the cladding tube. The cladding tube is sealed by TIG welding with the end plugs. Precipitates having grain diameters of 0.01 to 0.5 .mu.m and comprise intermetallic compounds containing Zr, Nb and Fe are present at grain boundaries in the structure of heat affected zones of the cladding tube, the heat affected zone being adjacent to a bead formed by TIG welding.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: June 15, 1999
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd., Mitsubishi Nuclear Fuel Co., Ltd.
    Inventors: Takeshi Isobe, Yoshiharu Mae, Toshimichi Takahashi, Yoshitaka Suda, Akio Sando, Eiji Yoneda