Patents by Inventor Toshinobu Yasutake

Toshinobu Yasutake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11439981
    Abstract: A catalyst for COS hydrolysis includes titanium dioxide and a barium compound supported on the titanium dioxide. The catalyst, when expressing Ba and S in the catalyst in terms of BaO and SO3, respectively, has a molar ratio of SO3 to BaO of at least 1. The catalyst converts COS and H2O in a raw material gas to CO2 and H2S.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 13, 2022
    Assignee: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Toshinobu Yasutake, Kaori Yoshida
  • Patent number: 11045799
    Abstract: Provided are: a cleaning agent for a denitration catalyst; and a denitration catalyst regeneration method and a denitration catalyst regeneration system which make it possible to efficiently remove matter adhering to a surface of a catalyst and to greatly restore catalytic performance. The regeneration method includes: a prewashing step (S12) of washing a denitration catalyst with water; a liquid agent cleaning step (S14) of immersing the denitration catalyst washed with water in a liquid agent containing an inorganic acid and a fluorine compound; a step of recovering the denitration catalyst from the liquid agent; and a finish washing step (S16) of washing the denitration catalyst recovered from the liquid agent with a finish cleaning liquid which is water or sulfamic acid-containing water.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: June 29, 2021
    Assignee: MITSUBISHI POWER, LTD.
    Inventors: Tomotsugu Masuda, Masanao Yonemura, Masanori Demoto, Kazuhiro Iwamoto, Toshinobu Yasutake, Makoto Yokoyama
  • Publication number: 20210060532
    Abstract: A catalyst for COS hydrolysis includes titanium dioxide and a barium compound supported on the titanium dioxide. The catalyst, when expressing Ba and S in the catalyst in terms of BaO and SO3, respectively, has a molar ratio of SO3 to BaO of at least 1. The catalyst converts COS and H2O in a raw material gas to CO2 and H2S.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 4, 2021
    Applicant: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Toshinobu Yasutake, Kaori Yoshida
  • Publication number: 20200398256
    Abstract: A catalyst for COS hydrolysis includes a catalyst containing titanium dioxide that supports a barium compound and a co-catalyst. The catalyst containing titanium dioxide that supports a barium compound is a molded catalyst comprising a honeycomb substrate. The co-catalyst is at least one selected from the group consisting of a potassium compound, a sodium compound, and a cesium compound.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 24, 2020
    Applicant: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Katsumi Nochi, Toshinobu Yasutake, Kaori Yoshida
  • Patent number: 10814309
    Abstract: A denitration catalyst for removing nitrogen oxide in an exhaust gas is represented by the following chemical formula: Ba3Y(4-x)AxO9, wherein A is an element selected from the group consisting of Bi, Sn, Ga, Mn, Ti, and Al; and X is 0.4 or more and 2 or less. A denitration device has the denitration catalyst for removing nitrogen oxide in an exhaust gas discharged from an exhaust gas generation source including a gas engine, a gas turbine, a melting furnace, or a boiler.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 27, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Nobuki Oka, Toshinobu Yasutake, Noriko Watari, Hidemasa Kakigami, Syuji Fujii, Akihiro Sawata
  • Patent number: 10774278
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) in gas. The CO shift catalyst has one of molybdenum (Mo) or iron (Fe) as a main component and has an active ingredient having one of nickel (Ni) or ruthenium (Ru) as an accessory component and one or two or more kinds of oxides from among titanium (Ti), zirconium (Zr), and cerium (Ce) for supporting the active ingredient as a support. The temperature at the time of manufacturing and firing the catalyst is equal to or higher than 550° C.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: September 15, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Akihiro Sawata, Yoshio Seiki, Yukio Tanaka, Koji Higashino, Hyota Abe, Kaori Yoshida
  • Publication number: 20200261889
    Abstract: A denitration catalyst for removing nitrogen oxide in an exhaust gas is represented by the following chemical formula: Ba3Y(4-x)AxO9, wherein A is an element selected from the group consisting of Bi, Sn, Ga, Mn, Ti, and Al; and X is 0.4 or more and 2 or less. A denitration device has the denitration catalyst for removing nitrogen oxide in an exhaust gas discharged from an exhaust gas generation source including a gas engine, a gas turbine, a melting furnace, or a boiler.
    Type: Application
    Filed: October 22, 2019
    Publication date: August 20, 2020
    Inventors: Nobuki OKA, Toshinobu YASUTAKE, Noriko WATARI, Hidemasa KAKIGAMI, Syuji FUJII, Akihiro SAWATA
  • Publication number: 20190232221
    Abstract: Provided are: an exhaust gas treatment catalyst capable of improving NO conversion rate when performing denitrification using CO as a reducing agent, and improving CO oxidation rate when oxidizing CO present in the exhaust gas; a method for producing an exhaust gas treatment catalyst; and an exhaust gas treatment system. The exhaust gas treatment catalyst is a catalyst which uses CO as a reducing agent to treat exhaust gas from a sintering furnace, and contains: a support that is a metal oxide or metal sulfate; and an active metal containing at least iridium supported by the support, wherein the specific surface area of the catalyst is 100 m2/g or less, and the crystallite size of iridium in the catalyst is 10-25 nm.
    Type: Application
    Filed: July 28, 2017
    Publication date: August 1, 2019
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Koji Higashino, Akihiro Sawata, Toshinobu Yasutake, Masanao Yonemura, Katsumi Nochi, Takafumi Kubota, Tomotsugu Masuda, Tomoaki Isobe
  • Patent number: 10190540
    Abstract: In order to stably use a catalyst for pyrolysis and supply a reformed fuel, the fuel supply system includes a fuel reforming section which pyrolyzes a hydrocarbon system fuel by the heat of the combustion chamber to generate the reformed fuel. The fuel reforming section includes a preheat vaporization section provided on the combustion chamber, and a decomposition reaction section that is provided on the preheat vaporization section and includes the catalyst for pyrolysis. The preheat vaporization section heats the fuel, the decomposition reaction section pyrolyzes the heated fuel to generate the reformed fuel, and the fuel reforming section supplies the reformed fuel to the combustion chamber. The reforming catalyst includes a zeolitic catalyst.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: January 29, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji Suzuki, Atsushi Kuroyanagi, Toshinobu Yasutake
  • Publication number: 20180185834
    Abstract: Provided are: a cleaning agent for a denitration catalyst; and a denitration catalyst regeneration method and a denitration catalyst regeneration system which make it possible to efficiently remove matter adhering to a surface of a catalyst and to greatly restore catalytic performance. The regeneration method includes: a prewashing step (S12) of washing a denitration catalyst with water; a liquid agent cleaning step (S14) of immersing the denitration catalyst washed with water in a liquid agent containing an inorganic acid and a fluorine compound; a step of recovering the denitration catalyst from the liquid agent; and a finish washing step (S16) of washing the denitration catalyst recovered from the liquid agent with a finish cleaning liquid which is water or sulfamic acid-containing water.
    Type: Application
    Filed: July 7, 2016
    Publication date: July 5, 2018
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Tomotsugu Masuda, Masanao Yonemura, Masanori Demoto, Kazuhiro Iwamoto, Toshinobu Yasutake, Makoto Yokoyama
  • Patent number: 9878310
    Abstract: Provided are a catalyst for hydrolysis and use of a titanium dioxide-based composition which are capable of removing COS and HCN simultaneously at high degradation percentages. The catalyst for hydrolysis is a catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide, having at least: an active component containing, as a main component, at least one metal selected from the group consisting of barium, nickel, ruthenium, cobalt, and molybdenum; and a titanium dioxide-based support supporting the active component.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: January 30, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Shuji Fujii, Koji Higashino, Makoto Susaki, Kaori Yoshida
  • Publication number: 20170267939
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) in gas. The CO shift catalyst has one of molybdenum (Mo) or iron (Fe) as a main component and has an active ingredient having one of nickel (Ni) or ruthenium (Ru) as an accessory component and one or two or more kinds of oxides from among titanium (Ti), zirconium (Zr), and cerium (Ce) for supporting the active ingredient as a support. The temperature at the time of manufacturing and firing the catalyst is equal to or higher than 550° C.
    Type: Application
    Filed: June 8, 2017
    Publication date: September 21, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Akihiro Sawata, Yoshio Seiki, Yukio Tanaka, Koji Higashino, Hyota Abe, Kaori Yoshida
  • Patent number: 9604206
    Abstract: A method for regenerating a carbonyl sulfide (COS) hydrolysis catalyst for hydrolyzing COS which is contained in a gas obtained by gasifying a carbon material, wherein a spent COS hydrolysis catalyst is immersed in an acid solution for a prescribed time thereby removing poisoning substances adhering to the surface of the COS hydrolysis catalyst; and thus regenerating the COS hydrolysis catalyst.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: March 28, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Akihiro Sawata, Yukio Tanaka, Hiroshi Yoshioka, Toshinobu Yasutake
  • Patent number: 9486797
    Abstract: The method for regenerating a carbonyl sulfide (COS) hydrolysis catalyst according to the present invention is a method for regenerating a Ba/TiO2 based carbonyl sulfide (COS) hydrolysis catalyst by hydrolyzing COS which is contained in a gas obtained by gasifying a carbon raw material, wherein a spent COS hydrolysis catalyst is washed with water, dried, immersed in an aqueous solution of a barium salt for a prescribed amount of time, dried, and calcined so as to re-support the active component on the surface of the COS hydrolysis catalyst, thus enabling the regeneration of the COS hydrolysis catalyst.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: November 8, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Akihiro Sawata, Yukio Tanaka, Hiroshi Yoshioka, Toshinobu Yasutake
  • Publication number: 20160144354
    Abstract: A method for regenerating a carbonyl sulfide (COS) hydrolysis catalyst for hydrolyzing COS which is contained in a gas obtained by gasifying a carbon material, wherein a spent COS hydrolysis catalyst is immersed in an acid solution for a prescribed time thereby removing poisoning substances adhering to the surface of the COS hydrolysis catalyst; and thus regenerating the COS hydrolysis catalyst.
    Type: Application
    Filed: October 20, 2014
    Publication date: May 26, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao YONEMURA, Akihiro SAWATA, Yukio TANAKA, Hiroshi YOSHIOKA, Toshinobu YASUTAKE
  • Publication number: 20160136636
    Abstract: The method for regenerating a carbonyl sulfide (COS) hydrolysis catalyst according to the present invention is a method for regenerating a Ba/TiO2 based carbonyl sulfide (COS) hydrolysis catalyst by hydrolyzing COS which is contained in a gas obtained by gasifying a carbon raw material, wherein a spent COS hydrolysis catalyst is washed with water, dried, immersed in an aqueous solution of a barium salt for a prescribed amount of time, dried, and calcined so as to re-support the active component on the surface of the COS hydrolysis catalyst, thus enabling the regeneration of the COS hydrolysis catalyst.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 19, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Akihiro Sawata, Yukio Tanaka, Hiroshi Yoshioka, Toshinobu Yasutake
  • Patent number: 9302251
    Abstract: A NOx removal catalyst for high-temperature flue gas according to the present invention is a NOx removal catalyst for high-temperature flue gas that contains nitrogen oxide in which tungsten oxide with the number of molecular layers of tungsten oxide (WO3) being five or less is supported on a complex oxide carrier containing titanium oxide. Even when high-temperature denitration is continued, a bonding force with a carrier of WO3 can be properly maintained and volatilization can be suppressed while maintaining a high NOx removal performance. For example, the NOx removal catalyst is particularly suitable for reducing and removing nitrogen oxide contained in high-temperature gas discharged from a thermal power plant and a high-temperature boiler.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: April 5, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsumi Nochi, Toshinobu Yasutake, Masanao Yonemura
  • Publication number: 20160032202
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) in gas. The CO shift catalyst has one of molybdenum (Mo) or iron (Fe) as a main component and has an active ingredient having one of nickel (Ni) or ruthenium (Ru) as an accessory component and one or two or more kinds of oxides from among titanium (Ti), zirconium (Zr), and cerium (Ce) for supporting the active ingredient as a support. The temperature at the time of manufacturing and firing the catalyst is equal to or higher than 550° C.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 4, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao YONEMURA, Toshinobu YASUTAKE, Akihiro SAWATA, Yoshio SEIKI, Yukio TANAKA, Koji HIGASHINO, Hyota ABE, Kaori YOSHIDA
  • Publication number: 20150299592
    Abstract: Provided is a CO shift catalyst that reforms carbon monoxide (CO) in a gas. The CO shift catalyst includes: an active component including either molybdenum (Mo) or iron (Fe) as a main component, and either nickel (Ni) or ruthenium (Ru) as an accessory component; and a carrier which carries the active component, and includes a composite oxide of two or more kinds of elements selected from the group consisting of titanium (Ti), zirconium (Zr), cerium (Ce), silica (Si), aluminum (Al), and lanthanum (La).
    Type: Application
    Filed: December 28, 2012
    Publication date: October 22, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Akihiro Sawata, Yoshio Seiki, Yukio Tanaka, Koji Higashino, Hyota Abe, Kaori Yoshida
  • Publication number: 20150291898
    Abstract: Provided is a CO shift catalyst that reforms carbon monoxide (CO) in a gas. The CO shift catalyst includes an active component containing either molybdenum (Mo) or iron (Fe) as a main component, and either nickel (Ni) or ruthenium (Ru) as an accessory component, and a carrier which carries the active component and consists of one or two or more kinds of oxides of titanium (Ti), zirconium (Zr), and cerium (Ce). A temperature during catalyst manufacturing firing is set to 600° C. or higher, and an average pore size of the carrier is set to 300 ? or more.
    Type: Application
    Filed: December 28, 2012
    Publication date: October 15, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Shuji Fujii, Koji Higashino, Makoto Susaki, Kaori Yoshida