Patents by Inventor Toshio Hinokimori

Toshio Hinokimori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9688817
    Abstract: A problem is to provide a method for producing a polyarylene sulfide resin having excellent reactivity to other compounds and resins, such as an impact resistance improver such as an epoxysilane coupling agent, a functional group-containing thermoplastic elastomer, or the like, and also provide a polyarylene sulfide resin composition produced by the production method, not containing chlorine atoms, and having the excellent reactivity. A method for producing a polyarylene sulfide resin includes performing polymerization reaction of a mixture containing a diiodo aromatic compound, a sulfur compound, and a polymerization inhibitor having a specified functional group. The problem can be solved by using a polyarylene sulfide resin composition containing a polyarylene sulfide resin having a specified terminal functional group and iodine atoms within a range of 0.01 to 10,000 ppm relative to the polyarylene sulfide resin.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: June 27, 2017
    Assignee: DIC CORPORATION (TOKYO)
    Inventors: Hajime Watanabe, Toshio Hinokimori
  • Publication number: 20160060397
    Abstract: A problem is to provide a method for producing a polyarylene sulfide resin having excellent reactivity to other compounds and resins, such as an impact resistance improver such as an epoxysilane coupling agent, a functional group-containing thermoplastic elastomer, or the like, and also provide a polyarylene sulfide resin composition produced by the production method, not containing chlorine atoms, and having the excellent reactivity. A method for producing a polyarylene sulfide resin includes performing polymerization reaction of a mixture containing a diiodo aromatic compound, a sulfur compound, and a polymerization inhibitor having a specified functional group. The problem can be solved by using a polyarylene sulfide resin composition containing a polyarylene sulfide resin having a specified terminal functional group and iodine atoms within a range of 0.01 to 10,000 ppm relative to the polyarylene sulfide resin.
    Type: Application
    Filed: March 20, 2014
    Publication date: March 3, 2016
    Applicant: DIC CORPORATION
    Inventors: Hajime Watanabe, Toshio Hinokimori
  • Patent number: 8883959
    Abstract: A method for producing a polyarylene sulfide resin, comprising: producing a slurry (I) containing a solid alkali metal sulfide by allowing a hydrous alkali metal sulfide, or a hydrous alkali metal hydrosulfide and an alkali metal hydroxide, and an aliphatic cyclic compound (c1) that can be ring-opened by hydrolysis to react with each other while conducting dehydration in the presence of a non-hydrolyzable organic solvent; adding an aprotic polar organic solvent after the production of the slurry (I) and distilling off water to conduct dehydration; and conducting polymerization by allowing a polyhaloaromatic compound (a), an alkali metal hydrosulfide (b), and an alkali metal salt (c2) of a hydrolysate of the compound (c1) to react with each other in the slurry (I) in a state where the amount of water existing in the reaction system is 0.02 moles or less relative to 1 mole of the aprotic polar organic solvent.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: November 11, 2014
    Assignee: DIC Corporation
    Inventor: Toshio Hinokimori
  • Publication number: 20140128568
    Abstract: A method for producing a polyarylene sulfide resin, comprising: producing a slurry (I) containing a solid alkali metal sulfide by allowing a hydrous alkali metal sulfide, or a hydrous alkali metal hydrosulfide and an alkali metal hydroxide, and an aliphatic cyclic compound (c1) that can be ring-opened by hydrolysis to react with each other while conducting dehydration in the presence of a non-hydrolyzable organic solvent; adding an aprotic polar organic solvent after the production of the slurry (I) and distilling off water to conduct dehydration; and conducting polymerization by allowing a polyhaloaromatic compound (a), an alkali metal hydrosulfide (b), and an alkali metal salt (c2) of a hydrolysate of the compound (c1) to react with each other in the slurry (I) in a state where the amount of water existing in the reaction system is 0.02 moles or less relative to 1 mole of the aprotic polar organic solvent.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: DIC Corporation
    Inventor: Toshio Hinokimori
  • Patent number: 8603599
    Abstract: There are provided, according to the present invention, a resin composition for hollow blow-molded article which is obtained in a high productivity on an industrial scale with excellent moldability and drawdown resistance, and the production method thereof, by melting and mixing a polyarylene sulfide resin including a terminal carboxyl group within the resin in an amount of 25 to 45 (?mol/g), and having a non-Newtonian index of 0.90 to 1.15 and also a melt viscosity as measured at 300° C. within the range of 1,000 poise to 3,000 poise and an epoxy group-containing polyolefin so that the proportion of the epoxy group-containing polyolefin is 5 to 30 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin; and a hollow blow-molded article with excellent mechanical strength, such as the heat resistance and impact resistance, and surface appearance, and the production method thereof.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: December 10, 2013
    Assignee: DIC Corporation
    Inventors: Shingo Matsuo, Toshio Hinokimori
  • Patent number: 8445629
    Abstract: A method for producing an acid group-containing polyarylene sulfide of the present invention includes a reaction step of reacting a polyhaloaromatic compound (a), an alkali metal hydrosulfide (b), and an alkali metal carboxylate (c) in the presence of a solid alkali metal sulfide and a lithium ion.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: May 21, 2013
    Assignee: DIC Corporation
    Inventors: Toshio Hinokimori, Nobuhiko Yamauchi, Takashi Furusawa
  • Patent number: 8426552
    Abstract: A method for producing an acid group-containing polyarylene sulfide of the present invention includes a reaction step of reacting a polyhaloaromatic compound (a), an alkali metal hydrosulfide (b), an alkali metal carboxylate (c), and an aromatic compound (d) having an elimination group and an acid group, which function in a nucleophilic reaction, in the presence of a solid alkali metal sulfide.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: April 23, 2013
    Assignee: DIC Corporation
    Inventors: Toshio Hinokimori, Nobuhiko Yamauchi, Takashi Furusawa
  • Publication number: 20130059976
    Abstract: There are provided, according to the present invention, a resin composition for hollow blow-molded article which is obtained in a high productivity on an industrial scale with excellent moldability and drawdown resistance, and the production method thereof, by melting and mixing a polyarylene sulfide resin including a terminal carboxyl group within the resin in an amount of 25 to 45 (?mol/g), and having a non-Newtonian index of 0.90 to 1.15 and also a melt viscosity as measured at 300° C. within the range of 1,000 poise to 3,000 poise and an epoxy group-containing polyolefin so that the proportion of the epoxy group-containing polyolefin is 5 to 30 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin; and a hollow blow-molded article with excellent mechanical strength, such as the heat resistance and impact resistance, and surface appearance, and the production method thereof.
    Type: Application
    Filed: May 24, 2011
    Publication date: March 7, 2013
    Applicant: DIC CORPORATION
    Inventors: Shingo Matsuo, Toshio Hinokimori
  • Publication number: 20110319587
    Abstract: A method for producing a polyarylene sulfide resin includes allowing a polyhaloaromatic compound (a), an alkali metal hydrosulfide (b), and an organic acid alkali metal salt (c) to react with each other in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent, wherein the reaction is conducted using the organic acid alkali metal salt (c) in a ratio of 0.01 moles or more and less than 0.9 moles relative to a total of 1 mole of the solid alkali metal sulfide and the alkali metal hydrosulfide (b) in a state where the amount of water existing in the reaction system is 0.02 moles or less relative to 1 mole of the aprotic polar organic solvent. Thus, it is possible to provide a method for producing a polyarylene sulfide resin with which high productivity is achieved on an industrial scale, and the molecular weight of the resulting polyarylene sulfide resin can be significantly increased.
    Type: Application
    Filed: November 10, 2009
    Publication date: December 29, 2011
    Applicant: DIC Corporation
    Inventor: Toshio Hinokimori
  • Publication number: 20100240863
    Abstract: A method for producing an acid group-containing polyarylene sulfide of the present invention includes a reaction step of reacting a polyhaloaromatic compound (a), an alkali metal hydrosulfide (b), an alkali metal carboxylate (c), and an aromatic compound (d) having an elimination group and an acid group, which function in a nucleophilic reaction, in the presence of a solid alkali metal sulfide.
    Type: Application
    Filed: August 7, 2007
    Publication date: September 23, 2010
    Applicant: DIC Corporation
    Inventors: Toshio Hinokimori, Nobuhiko Yamauchi, Takashi Furusawa
  • Publication number: 20100228003
    Abstract: A method for producing an acid group-containing polyarylene sulfide of the present invention includes a reaction step of reacting a polyhaloaromatic compound (a), an alkali metal hydrosulfide (b), and an alkali metal carboxylate (c) in the presence of a solid alkali metal sulfide and a lithium ion.
    Type: Application
    Filed: August 7, 2007
    Publication date: September 9, 2010
    Inventors: Toshio Hinokimori, Nobuhiko Yamauchi, Takashi Furusawa
  • Patent number: 6653437
    Abstract: A process for producing oxidative cross-linked polyarylene sulfide using a reaction apparatus including a reaction vessel provided with a resin inlet, a gas inlet, a resin outlet, and a gas outlet, and a transverse type heating member having a helical structure which is rotatable around a central shaft disposed in the reaction vessel. The process includes the step of supplying heated oxygen containing gas to the polyarylene sulfide from the downward direction of the transverse type heating member while the polyarylene sulfide is heated and agitated by the rotation of the transverse type heating member to carry out an oxidative cross-linking reaction of the polyarylene sulfide. According to the process, it becomes possible to increase the productivity and the gas components present in polyarylene sulfide can be effectively removed when the melt viscosity of polyarylene sulfide is increased to a desired degree after polymerizing the polyarylene sulfide.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: November 25, 2003
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Toshio Hinokimori, Nobuhiko Yamauchi, Takayuki Mine
  • Publication number: 20020193558
    Abstract: A process for producing oxidative cross-linked polyarylene sulfide using a reaction apparatus including a reaction vessel provided with a resin inlet, a gas inlet, a resin outlet, and a gas outlet, and a transverse type heating member having a helical structure which is rotatable around a central shaft disposed in the reaction vessel. The process includes the step of supplying heated oxygen containing gas to the polyarylene sulfide from the downward direction of the transverse type heating member while the polyarylene sulfide is heated and agitated by the rotation of the transverse type heating member to carry out an oxidative cross-linking reaction of the polyarylene sulfide. According to the process, it becomes possible to increase the productivity and the gas components present in polyarylene sulfide can be effectively removed when the melt viscosity of polyarylene sulfide is increased to a desired degree after polymerizing the polyarylene sulfide.
    Type: Application
    Filed: March 21, 2002
    Publication date: December 19, 2002
    Inventors: Toshio Hinokimori, Nobuhiko Yamauchi, Takayuki Mine