Patents by Inventor Toshishige Ai

Toshishige Ai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230315077
    Abstract: Provided is an abnormality response teaching system that estimates a factor of an abnormality and teaches a treatment for the factor. This abnormality response teaching system is provided with: an operation parameter acquisition unit for acquiring an operation parameter measured during operation of a device; a diagnosis information acquisition unit for acquiring diagnosis information indicating the result of a diagnosis of operation of a machine with which the device is provided, said diagnosis being executed prior to startup of the device; and a factor analysis unit for inputting the operation parameter and the diagnosis information to an FTA with which abnormality factors are analyzed, and thereby analyzing an abnormality factor, when an abnormality occurs in the device.
    Type: Application
    Filed: August 30, 2021
    Publication date: October 5, 2023
    Inventors: Yoshiyuki NAGATA, Hirofumi OHARA, Tomoyuki KOJIMA, Susumu SEKINE, Daiki FUJIMURA, Toshishige AI, Manabu SAITO
  • Patent number: 10858996
    Abstract: A gas turbine startup method and device wherein low-pressure, medium-pressure, and high-pressure air bleed flow paths supply compressed air bled from low-pressure, medium-pressure, and high-pressure air bleed chambers, respectively, of a compressor as cooling air to a turbine. Low-pressure, medium-pressure, and high-pressure exhaust flow paths discharge the compressed air in the low-pressure, medium-pressure, and high-pressure air bleed flow paths, respectively to the turbine exhaust system, and the low-pressure, the medium-pressure, and the high-pressure exhaust flow paths are provided respectively with a low-pressure exhaust valve, a medium-pressure exhaust valve, and a high-pressure exhaust valve. When the gas turbine starts up, the high-pressure exhaust valve is opened before the startup state of the gas turbine reaches a region in which rotation stall occurs.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: December 8, 2020
    Assignee: MITSUBISHI POWER, LTD.
    Inventors: Hidetaka Okui, Kentaro Suzuki, Toshishige Ai, Tatsuya Iwasaki, Yoshifumi Okajima
  • Patent number: 10634058
    Abstract: A cooling system includes: a high pressure bleed line configured to bleed high pressure compressed air from a first bleed position of a compressor and to send the air to a first hot part; a low pressure bleed line configured to bleed low pressure compressed air from a second bleed position of the compressor and to send the air to a second hot part; an orifice provided in the low pressure bleed line; a connecting line configured to connect the high pressure bleed line and the low pressure bleed line; a first valve provided in the connecting line; a bypass line configured to connect the connecting line and the low pressure bleed line; and a second valve provided in the bypass line.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: April 28, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshifumi Iwasaki, Toshishige Ai, Yuya Fukunaga, Tatsuya Iwasaki
  • Publication number: 20180171875
    Abstract: A gas turbine startup method and device wherein low-pressure, medium-pressure, and high-pressure air bleed flow paths supply compressed air bled from low-pressure, medium-pressure, and high-pressure air bleed chambers, respectively, of a compressor as cooling air to a turbine. Low-pressure, medium-pressure, and high-pressure exhaust flow paths discharge the compressed air in the low-pressure, medium-pressure, and high-pressure air bleed flow paths, respectively to the turbine exhaust system, and the low-pressure, the medium-pressure, and the high-pressure exhaust flow paths are provided respectively with a low-pressure exhaust valve, a medium-pressure exhaust valve, and a high-pressure exhaust valve. When the gas turbine starts up, the high-pressure exhaust valve is opened before the startup state of the gas turbine reaches a region in which rotation stall occurs.
    Type: Application
    Filed: October 26, 2016
    Publication date: June 21, 2018
    Inventors: Hidetaka OKUI, Kentaro SUZUKI, Toshishige AI, Tatsuya IWASAKI, Yoshifumi OKAJIMA
  • Publication number: 20180010520
    Abstract: A cooling system includes: a high pressure bleed line configured to bleed high pressure compressed air from a first bleed position of a compressor and to send the air to a first hot part; a low pressure bleed line configured to bleed low pressure compressed air from a second bleed position of the compressor and to send the air to a second hot part; an orifice provided in the low pressure bleed line; a connecting line configured to connect the high pressure bleed line and the low pressure bleed line; a first valve provided in the connecting line; a bypass line configured to connect the connecting line and the low pressure bleed line; and a second valve provided in the bypass line.
    Type: Application
    Filed: January 25, 2016
    Publication date: January 11, 2018
    Inventors: Yoshifumi IWASAKI, Toshishige AI, Yuya FUKUNAGA, Tatsuya IWASAKI
  • Patent number: 8602724
    Abstract: Provided is a gas turbine plant that enables active clearance control for ensuring tip clearance of first-stage turbine rotor blades required during start-up and for achieving the minimum tip clearance during load operation. In a gas turbine plant including a cooler in an air system used for cooling second-stage turbine stator blades, a first-stage segmented ring and a second-stage segmented ring that oppose tips of first-stage turbine rotor blades and second-stage turbine rotor blades are supported by the same blade ring member, and a cooling-air for the second-stage turbine stator blades forms a cooling air flow cooling the blade ring, to control thermal expansion of the blade ring and to control the clearance with respect to the tips.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tatsuji Takahashi, Naoki Hagi, Toshishige Ai
  • Publication number: 20110135456
    Abstract: Provided is a gas turbine plant that enables active clearance control for ensuring tip clearance of first-stage turbine rotor blades required during start-up and for achieving the minimum tip clearance during load operation. In a gas turbine plant including a cooler in an air system used for cooling second-stage turbine stator blades, a first-stage segmented ring and a second-stage segmented ring that oppose tips of first-stage turbine rotor blades and second-stage turbine rotor blades are supported by the same blade ring member, and a cooling-air for the second-stage turbine stator blades forms a cooling air flow cooling the blade ring, to control thermal expansion of the blade ring and to control the clearance with respect to the tips.
    Type: Application
    Filed: January 20, 2009
    Publication date: June 9, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuji Takahashi, Naoki Hagi, Toshishige Ai
  • Patent number: 6471213
    Abstract: A seal ring separating surface for a gas turbine, which sets a shape of an end portion in the separation surface to a cutting surface and reduces the leaking amount of sealing air. A seal ring holding ring (1) fixes brush seals (3, 4) on an upstream side of a stationary blade by bolts (5, 6) respectively, so as to form a seal with respect to a rotor disc (69). Further, the seal ring holding ring (1) fixes and supports a seal ring (2) on a downstream side by a bolt (7) so as to form a seal with respect to a seal portion (8) on the disc (69) side. The brush seals (3, 4) and the seal ring (2) are structured so as to have a circular ring shape and a separation construction, and each of the separation pieces has a gap, so that sealing air can leak to a downstream side from an upstream side through the gap.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: October 29, 2002
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masanori Yuri, Toshishige Ai
  • Patent number: 6217279
    Abstract: A sealing device for a gas turbine stator blade, in which an outer shroud (32) is mounted by heat insulating rings (32a,32b) on a blade ring (50). The blade ring (50) has a first air hole (1), which communicates with a space (53), and a second air hole (51), which communicates with a seal tube (2). The seal tube (2) is inserted into the second air hole (51), and a spring (6) is arranged between a projection (4) of the tube (2) and a retaining portion (5) of the air hole (51) to removably secure the seal tube (2). Cooling air (54) flows through the first air hole (1) to cool the shrouds and the inside of a stator blade (31) until it is released from the trailing edge of the blade. The cooling air also flows into a cavity (36) so that a high pressure can be maintained without a pressure loss because the tube (2) is independent of the space (53) in the blade ring.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: April 17, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshishige Ai, Masanori Yuri, Yasuoki Tomita, Kiyoshi Suenaga, Sunao Aoki, Hiroki Fukuno
  • Patent number: 6152694
    Abstract: A tip shroud (11) for a moving blade to be used at a downstream stage of a gas turbine. The tip shroud is extended in its creep lifetime by feeding it effectively with cooling air. In the tip shroud (11), there are cut-off portions (12, 13) which are passed by a hot combustion gas so that they are influenced by thermal stress. On the shroud faces, there are formed grooves (31, 32; 33, 34), and cooling guide covers (21, 22) are mounted in the grooves. The cooling guide covers (21, 22) are closed at one side with members (21a, 22a) and open at an end thereof. The covers function to cover the air holes (17) so that the cooling air is fed to the cut-off portions (12, 13) individually. The metal temperature rise at the cut-off portions (12, 13), as will be influenced by the hot combustion gas, can be suppressed so as to extend the creep lifetime of the tip shroud.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: November 28, 2000
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Toshishige Ai
  • Patent number: 6151881
    Abstract: An air separator for a gas turbine, in which cracks are prevented from occurring at a flange portion of the air separator due to fretting fatigue. The air separator (20) has a cylindrical split structure formed by two separator members (20-1 and 20-2), of which one of the separators (20-1) is mounted on a rotor (1) whereas the other separator member (20-2) is mounted on a disc portion (7) on a side of a moving blade (2) by bolts (28) extending through bolt holes (23) formed in a flange portion (22). Cooling air from a compressor enters a space (6) from a duct (5) and passes to a passage (32) from a clearance (33) so that it is fed to air feed holes (43) and radial holes (44) of the disc portion (7). Alternatively, air holes (50) are provided in the flange portion (22) in the form of circumferential slots for covering a plurality of radial holes to feed the cooling air homogeneously so that a prior art air separator of an existing plant can be replaced.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: November 28, 2000
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshishige Ai, Yoichi Iwasaki, Sunao Aoki, Yukihiro Hashimoto, Kiyoshi Suenaga