Patents by Inventor Toshiya Yamada

Toshiya Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200365771
    Abstract: A semiconductor device includes: a mounting board; and a semiconductor element disposed on the mounting board via metal bumps, wherein the semiconductor element includes a semiconductor stacked structure and first electrodes, the mounting board includes second electrodes, the metal bumps include a first layer in contact with the first electrodes of the semiconductor element and a second layer located on a side opposite to the first electrodes, an average crystal grain size of crystals included in the first layer is larger than an average crystal grain size of crystals included in the second layer, and the second layer is spaced apart from the first electrodes of the semiconductor element.
    Type: Application
    Filed: December 20, 2018
    Publication date: November 19, 2020
    Applicants: PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD., PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD.
    Inventors: Masanori HIROKI, Shigeo HAYASHI, Kenji NAKASHIMA, Toshiya FUKUHISA, Keimei MASAMOTO, Atsushi YAMADA
  • Publication number: 20200299422
    Abstract: There is provided a novel alkoxymagnesium which, when used as a constituent of a solid catalyst component for olefin polymerization to polymerize an olefin, may reduce the formation rate of a fine powder and may form a polymer having an excellent particle size distribution under high polymerization activity. The alkoxymagnesium is characterized by comprising secondary particles each of which is an aggregate of primary particles having an average particle diameter of less than 1 ?m and by having a ratio represented by the average particle diameter of the primary particles/the average particle diameter of the secondary particles of 0.1 or less, a total pore volume of 0.5 to 1 cm3/g, a specific surface area of less than 50 m2/g, and a particle size distribution index (SPAN) 1 or less.
    Type: Application
    Filed: March 23, 2017
    Publication date: September 24, 2020
    Applicant: TOHO TITANIUM CO., LTD.
    Inventors: Hiroyuki KONO, Shingo YAMADA, Toshiya UOZUMI
  • Publication number: 20190378711
    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyly halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 12, 2019
    Inventors: Toshiya Suzuki, Viljami J. Pore, Shang Chen, Ryoko Yamada, Dai Ishikawa, Kunitoshi Namba
  • Patent number: 10497980
    Abstract: An electrolytic solution containing a heteroelement-containing organic solvent at a mole ratio of 3-5 relative to a metal salt, the heteroelement-containing organic solvent containing a specific organic solvent having a relative permittivity of not greater than 10 and/or a dipole moment of not greater than 5D, the metal salt being a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below: (R1X1)(R2SO2)N??general formula (1).
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: December 3, 2019
    Assignees: UNIVERSITY OF TOKYO, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tomoyuki Kawai, Yoshihiro Nakagaki, Hiroyuki Sasaki, Yuki Hasegawa, Kohei Mase, Hitoshi Aikiyo, Toshiya Arakawa, Atsuo Yamada, Yuki Yamada
  • Patent number: 10472436
    Abstract: A solid catalyst component for olefin polymerization exhibits excellent catalytic activity during polymerization, and can produce a polymer that exhibits excellent stereoregularity, bulk density, and the like even when a polymerization catalyst is produced in an inert atmosphere using an electron donor compound other than a phthalic ester and an organosilicon compound. The solid catalyst component for olefin polymerization is produced by bringing a vinylsilane compound (d) into contact with a catalyst component, the catalyst component being a powdery solid component obtained by bringing a magnesium compound (a), a titanium halide compound (b), and an electron donor compound (c) into contact with each other, the electron donor compound (c) being one or more compounds that do not include a phthalic ester structure, and include one or more groups selected from an ester group, a carbonate group, and an ether group, the vinylsilane compound (d) being brought into contact with the catalyst component in a 0.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: November 12, 2019
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Hiroyuki Kono, Toshiya Uozumi, Shingo Yamada, Toshihiko Sugano
  • Publication number: 20190289195
    Abstract: A data processing system includes a unit which executes predetermined data processing by linking first and second apparatuses, a communication control unit which establishes and maintains a communication connection between the apparatuses even if the connection is not in a predetermined operation state capable of executing data processing, a pairing unit which causes the apparatuses to transition to a pairing state, and a control unit which, if the apparatuses' transition to the pairing state is not in a predetermined operation state, causes transition to the operation state by transmitting predetermined signals between the apparatuses via the communication control unit. The execution unit causes the apparatuses to transition to a pairing state, and then executes data processing by linking them. The communication control unit judges whether to establish a communication connection between the apparatuses by referencing pairing states between them, and of a combination with another first or second apparatus.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Applicant: CASIO COMPUTER CO., LTD.
    Inventors: Daisuke OTANI, Jun HOSODA, Kazuya NARA, Yuji KURIYAMA, Yoshinori TOMIDOKORO, Toshiya KISO, Takuya YAMADA
  • Patent number: 10416593
    Abstract: A developing device includes a developing container, a developing sleeve, a magnet and grooves provided at a surface of the sleeve and formed along a direction crossing a circumferential direction of the sleeve. In a cross-section, each of the grooves is formed by a flat bottom portion contacting a carrier particle and a pair of side surface portions provided in both sides of the flat bottom portion with respect to the circumferential direction of the sleeve and satisfies the following relationship: r<w<2r, 2×r<L, and r/2?s<2r. In the above, r is a volume-average particle size of the carrier particles, w is a length of the flat bottom portion, L is a width between the side surface portions at the surface of the sleeve, and s is a depth of each of the grooves.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: September 17, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yusuke Ishida, Takanori Iida, Yasushi Takeuchi, Toshiyuki Yamada, Shiro Higashikozono, Hiroto Kakinuma, Toshiya Kobayashi
  • Patent number: 10410857
    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyl halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: September 10, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Toshiya Suzuki, Viljami J. Pore, Shang Chen, Ryoko Yamada, Dai Ishikawa, Kunitoshi Namba
  • Patent number: 10392453
    Abstract: A method for producing an olefin polymerization catalyst includes bringing a solid catalyst component for olefin polymerization, a vinylsilane compound, an organosilicon compound, and an organoaluminum compound into contact with each other in an inert organic solvent under an inert gas atmosphere in the absence of a specific vinyl compound, wherein a washing treatment is not performed after the vinylsilane compound has been added to the reaction system, the solid catalyst component includes a magnesium compound, a titanium halide compound, and an electron donor compound that does not include a phthalic acid ester structure, and includes a diol skeleton, and the organosilicon compound does not include a vinyl group, and includes at least one group selected from an alkoxy group and an amino group.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: August 27, 2019
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Hiroyuki Kono, Toshiya Uozumi, Shingo Yamada, Toshihiko Sugano
  • Patent number: 10367988
    Abstract: A data processing system (S) is configured so as mutually register transmission destinations between devices performing communication.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 30, 2019
    Assignee: CASIO COMPUTER CO., LTD.
    Inventors: Daisuke Otani, Jun Hosoda, Kazuya Nara, Yuji Kuriyama, Yoshinori Tomidokoro, Toshiya Kiso, Takuya Yamada
  • Patent number: 10364304
    Abstract: A method for producing a solid catalyst component for olefin polymerization includes bringing a magnesium compound, a tetravalent titanium halide compound, and an electron donor compound represented by a general formula (1) into contact with each other, reacting the mixture, washing the resulting reaction product to obtain a solid component, bringing the solid component, a tetravalent titanium halide compound, and an electron donor compound represented by a general formula (2) into contact with each other, reacting the mixture, and washing the resulting reaction product. (R1)kC6H4-k(COOR2)(COOR3)??(1) R4R5C(COOR6)2??(2) A polymer that exhibits high activity with respect to hydrogen, high stereoregularity, and high bulk density can be obtained using a catalyst including a solid catalyst component obtained by the method.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: July 30, 2019
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Toshiya Uozumi, Shingo Yamada
  • Patent number: 10347944
    Abstract: An electrolytic solution containing a heteroelement-containing organic solvent at a mole ratio of 3-5 relative to a metal salt, the heteroelement-containing organic solvent containing a specific organic solvent having a relative permittivity of not greater than 10 and/or a dipole moment of not greater than 5D, the metal salt being a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below: (R1X1)(R2SO2)N??general formula (1).
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: July 9, 2019
    Assignees: UNIVERSITY OF TOKYO, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tomoyuki Kawai, Yoshihiro Nakagaki, Hiroyuki Sasaki, Yuki Hasegawa, Kohei Mase, Hitoshi Aikiyo, Toshiya Arakawa, Atsuo Yamada, Yuki Yamada
  • Publication number: 20180064397
    Abstract: A wearable device attached to a subject includes an accelerometer that measures acceleration information, and a biological sensor that measures biological signal information of the subject. From the measured acceleration information and biological signal information, first feature data corresponding to a first predetermined period and second feature data corresponding to a second predetermined period are extracted. By machine learning based on the first feature data, a dynamic/static activity identification model, a dynamic-activity identification model, and a static-activity identification model, for the subject, are generated. By combination of results of determination based on each of the identification models, a posture and an activity of the subject are identified, and correspondence information, which associates the identified posture and activity with the biological signal information of the subject, is generated.
    Type: Application
    Filed: February 16, 2016
    Publication date: March 8, 2018
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Keitaro HORIKAWA, Yoshitaka NAKAMURA, Masato SAWADA, Akihiro YAMANAKA, Shingo TSUKADA, Toshiya YAMADA
  • Patent number: 9509145
    Abstract: The disclosed distributed power supply system does not become disconnected from a grid simultaneously with others when the grid voltage falls instantaneously. In a distributed power supply device which controls an inverter circuit 10 based on a control signal obtained by comparing a predetermined carrier signal and voltage command signals of three phases and which converts DC power to AC power and supplies the AC power to a power grid of a three-phase AC power supply, fundamental wave signals of three phases are generated from a grid voltage of the three-phase AC power supply. A reference cosine wave signal is generated from the fundamental wave signals of three phases. A third harmonic signal is generated from the reference cosine wave signal and the fundamental wave signals of three phases. The three-phase fundamental wave signals and the third harmonic signal are added to generate voltage command signals of three phases.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: November 29, 2016
    Assignees: HOKURIKU ELECTRIC POWER COMPANY, FUJI ELECTRIC CO., LTD.
    Inventors: Norikazu Kanao, Kansuke Fujii, Toshiya Yamada, Motohiro Katayama
  • Patent number: 8928178
    Abstract: With a method whereby reactive power is changed from a fluctuating output to a constant output by a frequency rise or fall monitor circuit stage level being exceeded, and an isolated operation is detected, a problem occurs with a small scale grid in that, as the frequency is liable to fluctuate due to a load fluctuation, there is liable to be a false detection of an isolated operation. In contrast, an abnormal frequency stage detection can be performed such that the frequency at a point when the rising edge of a reactive power fluctuation is detected, and the frequency at a point when the falling edge is detected, are detected sequentially, and an abnormal frequency stage detection is recognized when the order of the difference between the current detection value and the previous detection value is “increase”, “decrease”, “increase”.
    Type: Grant
    Filed: July 9, 2011
    Date of Patent: January 6, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Toshiya Yamada, Kansuke Fujii
  • Patent number: 8743571
    Abstract: A distributed power supply system in which no simultaneous disconnection from the system occurs when a system voltage momentarily drops is provided. It includes an inverter circuit that converts a direct current power generated by a direct current power supply and that supplies the alternating current power to an alternating current power supply power system, and an inverter control circuit for carrying out PWM control of the inverter circuit, wherein the inverter control circuit includes a three-phase voltage command signal generation unit, that is configured of a three-phase fundamental wave signal generation unit that generates three-phase fundamental wave signals from two phase components of voltage detected by a voltage detector, and a third harmonic signal generation unit that adds together third harmonic components of respective phases, having a predetermined amplitude, generated based on the three-phase fundamental wave signals.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: June 3, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Toshiya Yamada, Kansuke Fujii, Kazuyoshi Umezawa, Masaki Katoh, Motohiro Katayama
  • Publication number: 20130328398
    Abstract: The disclosed distributed power supply system does not become disconnected from a grid simultaneously with others when the grid voltage falls instantaneously. In a distributed power supply device which controls an inverter circuit 10 based on a control signal obtained by comparing a predetermined carrier signal and voltage command signals of three phases and which converts DC power to AC power and supplies the AC power to a power grid of a three-phase AC power supply, fundamental wave signals of three phases are generated from a grid voltage of the three-phase AC power supply. A reference cosine wave signal is generated from the fundamental wave signals of three phases. A third harmonic signal is generated from the reference cosine wave signal and the fundamental wave signals of three phases. The three-phase fundamental wave signals and the third harmonic signal are added to generate voltage command signals of three phases.
    Type: Application
    Filed: February 3, 2012
    Publication date: December 12, 2013
    Applicants: Fuji Electric Co., Ltd., Hokuriku Electric Power Company
    Inventors: Norikazu Kanao, Kansuke Fujii, Toshiya Yamada, Motohiro Katayama
  • Patent number: 8559201
    Abstract: A grid-connected inverter includes first and second power conversion circuits, a contactor and a control circuit. The first conversion circuit converts a first DC voltage to a second DC voltage. The second conversion circuit converts the second DC voltage to an AC voltage. The contactor connects an output side of the second conversion circuit to a power system. The control circuit includes a decision circuit and controls start and stop operations of the conversion circuits, and opening and closing of the contactor. The decision circuit decides whether a condition of the contactor is abnormal by detecting, after the control circuit controls the contactor to be open, whether or not a value of the second DC voltage is less than a threshold value, and if the value of the second DC voltage is detected to be not less than the threshold value, decides that the condition of the contactor is abnormal.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: October 15, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Kansuke Fujii, Toshiya Yamada, Masaki Katoh
  • Patent number: 8544519
    Abstract: The present invention is to provide a tack labeler capable of automatically adhering tack labels without using release papers to articles to be adhered.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 1, 2013
    Assignee: Fuji Seal International, Inc.
    Inventors: Masahide Ikeda, Toshiya Yamada, Hiroshi Sugimoto, Hiroyuki Fujita, Akihiko Fujihira
  • Publication number: 20120262957
    Abstract: A distributed power supply system in which no simultaneous disconnection from the system occurs when a system voltage momentarily drops is provided. It includes an inverter circuit that converts a direct current power generated by a direct current power supply and that supplies the alternating current power to an alternating current power supply power system, and an inverter control circuit for carrying out PWM control of the inverter circuit, wherein the inverter control circuit includes a three-phase voltage command signal generation unit, that is configured of a three-phase fundamental wave signal generation unit that generates three-phase fundamental wave signals from two phase components of voltage detected by a voltage detector, and a third harmonic signal generation unit that adds together third harmonic components of respective phases, having a predetermined amplitude, generated based on the three-phase fundamental wave signals.
    Type: Application
    Filed: October 11, 2011
    Publication date: October 18, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Toshiya YAMADA, Kansuke FUJII, Kazuyoshi UMEZAWA, Masaki KATOH, Motohiro KATAYAMA