Patents by Inventor Toshiyuki Yamane

Toshiyuki Yamane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10451798
    Abstract: A photonic neural component including optical transmitters, optical receivers, inter-node waveguides formed on a board, multiplexers configured to multiplex input optical signals onto the inter-node waveguides, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides via the multiplexers, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: October 22, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20190235165
    Abstract: A photonic neural component includes optical transmitters, optical receivers, inter-node waveguides formed on a board, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Patent number: 10353145
    Abstract: A photonic neural component includes optical transmitters, optical receivers, inter-node waveguides formed on a board, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: July 16, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20190205742
    Abstract: Provided is a reservoir computing system that is miniaturized and has a reduced learning cost. The reservoir computing system uses a reservoir that includes a first optical output section that outputs a first optical signal; a first optical waveguide that propagates the first optical signal output by the first optical output section; an optical receiving section that receives the first optical signal from the first optical waveguide; a storage section that stores received optical data corresponding to the first optical signal and output by the optical receiving section; and a feedback section that applies, to the first optical signal, feedback corresponding to the received optical data stored in the storage section.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 4, 2019
    Inventors: Seiji Takeda, Daiju Nakano, Toshiyuki Yamane, Jean Benoit Heroux
  • Publication number: 20190137686
    Abstract: A photonic neural component including optical transmitters, optical receivers, inter-node waveguides formed on a board, multiplexers configured to multiplex input optical signals onto the inter-node waveguides, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides via the multiplexers, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Patent number: 10222548
    Abstract: A photonic neural component including optical transmitters, optical receivers, inter-node waveguides formed on a board, multiplexers configured to multiplex input optical signals onto the inter-node waveguides, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides via the multiplexers, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: March 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180356592
    Abstract: A photonic neural component includes optical transmitters, optical receivers, inter-node waveguides formed on a board, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 13, 2018
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180309266
    Abstract: To realize a reservoir computing system with a small size and reduced learning cost, provided is a laser apparatus including a laser; a feedback waveguide that is operable to feed light output from the laser back to the laser; an optical splitter that is provided in a path of the feedback waveguide and is operable to output a portion of light propagated in the feedback waveguide to outside; and a first ring resonator that is operable to be optically connected to the feedback waveguide, as well as a reservoir computing system including this laser apparatus.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 25, 2018
    Inventors: Daiju Nakano, Seiji Takeda, Toshiyuki Yamane
  • Patent number: 10107959
    Abstract: A photonic neural component includes optical transmitters, optical receivers, inter-node waveguides formed on a board, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: October 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180285728
    Abstract: To realize a reservoir computing system easily implemented as hardware, provided is a reservoir computing system including a reservoir operable to output an inherent output signal in response to an input signal. An input node is operable to supply the reservoir with an input signal corresponding to input data, and an output node is operable to output an output value corresponding to an output signal that is output by the reservoir in response to the input data. An adaptive filter is operable to output output data based on a result obtained by weighting a plurality of the output values output from the output node at a plurality of timings with a plurality of weights. Also provided are a learning method and a computer program product.
    Type: Application
    Filed: April 3, 2017
    Publication date: October 4, 2018
    Inventors: Daiju Nakano, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180285729
    Abstract: To realize a reservoir computing system easily implemented as hardware, provided is a reservoir computing system including a reservoir operable to output an inherent output signal in response to an input signal. An input node is operable to supply the reservoir with an input signal corresponding to input data, and an output node is operable to output an output value corresponding to an output signal that is output by the reservoir in response to the input data. An adaptive filter is operable to output output data based on a result obtained by weighting a plurality of the output values output from the output node at a plurality of timings with a plurality of weights. Also provided are a learning method and a computer program product.
    Type: Application
    Filed: November 1, 2017
    Publication date: October 4, 2018
    Inventors: Daiju Nakano, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180267236
    Abstract: A photonic neural component including optical transmitters, optical receivers, inter-node waveguides formed on a board, multiplexers configured to multiplex input optical signals onto the inter-node waveguides, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides via the multiplexers, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Application
    Filed: May 17, 2018
    Publication date: September 20, 2018
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180217328
    Abstract: A photonic neural component includes optical transmitters, optical receivers, inter-node waveguides formed on a board, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 2, 2018
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180217327
    Abstract: A photonic neural component including optical transmitters, optical receivers, inter-node waveguides formed on a board, multiplexers configured to multiplex input optical signals onto the inter-node waveguides, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides via the multiplexers, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 2, 2018
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Patent number: 10031287
    Abstract: A photonic neural component including optical transmitters, optical receivers, inter-node waveguides formed on a board, multiplexers configured to multiplex input optical signals onto the inter-node waveguides, transmitting waveguides configured to receive optical signals emitted from the optical transmitters and transmit the received optical signals to the inter-node waveguides via the multiplexers, mirrors to partially reflect optical signals propagating on the inter-node waveguides, receiving waveguides configured to receive reflected optical signals produced by the mirrors and transmit the reflected optical signals to the optical receivers, and filters configured to apply weights to the reflected optical signals. The transmitting waveguides and receiving waveguides are formed on the board such that one of the transmitting waveguides and one of the receiving waveguides crosses one of the inter-node waveguides with a core of one of the crossing waveguides passing through a core or clad of the other.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: July 24, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jean Benoit Heroux, Seiji Takeda, Toshiyuki Yamane
  • Patent number: 9996794
    Abstract: Various Reservoir Computing systems and a method performed by a Reservoir Computing system are provided. A Reservoir Computing system includes a laser for emitting light. The Reservoir Computing system further includes a mirror for reflecting external feedback light back to the laser. The Reservoir Computing system also includes a modulator for modulating the external feedback light reflected back to the laser. The Reservoir Computing system additionally includes a photo-detector for converting a laser output signal to an electrical signal.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Daiju Nakano, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20180046909
    Abstract: Various Reservoir Computing systems and a method performed by a Reservoir Computing system are provided. A Reservoir Computing system includes a laser for emitting light. The Reservoir Computing system further includes a mirror for reflecting external feedback light back to the laser. The Reservoir Computing system also includes a modulator for modulating the external feedback light reflected back to the laser. The Reservoir Computing system additionally includes a photo-detector for converting a laser output signal to an electrical signal.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 15, 2018
    Inventors: DAIJU NAKANO, SEIJI TAKEDA, TOSHIYUKI YAMANE
  • Patent number: 9852372
    Abstract: Various Reservoir Computing systems and a method performed by a Reservoir Computing system are provided. A Reservoir Computing system includes a laser for emitting light. The Reservoir Computing system further includes a mirror for reflecting external feedback light back to the laser. The Reservoir Computing system also includes a modulator for modulating the external feedback light reflected back to the laser. The Reservoir Computing system additionally includes a photo-detector for converting a laser output signal to an electrical signal. The Reservoir Computing system further includes an analog-to-digital converter for sampling the electrical signal. The Reservoir Computing system also includes a controller for applying a learning algorithm to the sampled electrical signal.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Daiju Nakano, Seiji Takeda, Toshiyuki Yamane
  • Publication number: 20170351950
    Abstract: Various Reservoir Computing systems and a method performed by a Reservoir Computing system are provided. A Reservoir Computing system includes a laser for emitting light. The Reservoir Computing system further includes a mirror for reflecting external feedback light back to the laser. The Reservoir Computing system also includes a modulator for modulating the external feedback light reflected back to the laser. The Reservoir Computing system additionally includes a photo-detector for converting a laser output signal to an electrical signal. The Reservoir Computing system further includes an analog-to-digital converter for sampling the electrical signal. The Reservoir Computing system also includes a controller for applying a learning algorithm to the sampled electrical signal.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 7, 2017
    Inventors: DAIJU NAKANO, SEIJI TAKEDA, TOSHIYUKI YAMANE
  • Publication number: 20140067741
    Abstract: A plurality of chips arranged in a certain layout so as to face free space, and one or more optical elements are included. In the case where signal traffic for electrical communication with a given chip exceeds or is expected to exceed a certain threshold, a plurality of chips involved in communication routing of the excess signal traffic are identified, part of related signal traffic that crosses the plurality of identified chips is converted from an electric signal into an optical signal to re-route the excess signal traffic, and paths of the related signal traffic are dynamically adapted from fixed wired paths between the plurality of chips to optical communication paths formed in the free space.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Yasunao Katayama, Daiju Nakano, Toshiyuki Yamane